Below, I plot the following Figure in Python:
As you can see the plot on the right is much more "smooth" than the one on the left. That's because the scaling of x-axis on both plot is different. More observations on the left than on the right (about three times more). Hence how can I "squeeze" horizontally the right plot such that I get somewhat an approximative look to the one of the left? Below is my code (I use Pandas):
fig, axes = plt.subplots(1, 2, sharey=True, figsize=(30, 15))
# plot the same data on both axes
#gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1])
ax1 = df1.plot(ax=axes[0], grid='off', legend=False,
xticks=[-250, -200, -150, -100, -50,
0, 25], lw=2, colormap='jet',
fontsize=20)
ax2 = df2.plot(ax=axes[1], grid='off', legend=False,
xticks=[-5, 0, 20, 40, 60, 80], lw=2,
colormap='jet', fontsize=20)
# zoom-in / limit the view to different portions of the data
# hide the spines between ax and ax2
ax1.set_ylabel('Treatment-Control Ratio', fontsize=20)
ax1.axhline(y=1, color='r', linewidth=1.5)
ax2.axhline(y=1, color='r', linewidth=1.5)
ax1.axvline(x=0, color='r', linewidth=1.5, linestyle='--')
ax2.axvline(x=0, color='r', linewidth=1.5, linestyle='--')
ax1.set_xlabel('Event Time - 1 Minute', fontsize=20)
ax2.set_xlabel('Event Time - 1 Minute', fontsize=20)
ax1.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax1.yaxis.tick_left()
ax2.yaxis.set_major_locator(plt.NullLocator())
ax1.tick_params(labeltop='off') # don't put tick labels at the top
plt.subplots_adjust(wspace=0.11)
plt.tight_layout()