I've been doing some of the LeetCode problems, and I notice that the C solutions are a couple of times faster than the exact same thing in C++. For example:
Updated with a couple of simpler examples:
Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You may assume no duplicates in the array. (Link to question on LeetCode)
My solution in C, runs in 3 ms:
int searchInsert(int A[], int n, int target) {
int left = 0;
int right = n;
int mid = 0;
while (left<right) {
mid = (left + right) / 2;
if (A[mid]<target) {
left = mid + 1;
}
else if (A[mid]>target) {
right = mid;
}
else {
return mid;
}
}
return left;
}
My other C++ solution, exactly the same but as a member function of the Solution class runs in 13 ms:
class Solution {
public:
int searchInsert(int A[], int n, int target) {
int left = 0;
int right = n;
int mid = 0;
while (left<right) {
mid = (left + right) / 2;
if (A[mid]<target) {
left = mid + 1;
}
else if (A[mid]>target) {
right = mid;
}
else {
return mid;
}
}
return left;
}
};
Even simpler example:
Reverse the digits of an integer. Return 0 if the result will overflow. (Link to question on LeetCode)
The C version runs in 6 ms:
int reverse(int x) {
long rev = x % 10;
x /= 10;
while (x != 0) {
rev *= 10L;
rev += x % 10;
x /= 10;
if (rev>(-1U >> 1) || rev < (1 << 31)) {
return 0;
}
}
return rev;
}
And the C++ version is exactly the same but as a member function of the Solution class, and runs for 19 ms:
class Solution {
public:
int reverse(int x) {
long rev = x % 10;
x /= 10;
while (x != 0) {
rev *= 10L;
rev += x % 10;
x /= 10;
if (rev>(-1U >> 1) || rev < (1 << 31)) {
return 0;
}
}
return rev;
}
};
I see how there would be considerable overhead from using vector of vector as a 2D array in the original example if the LeetCode testing system doesn't compile the code with optimisation enabled. But the simpler examples above shouldn't suffer that issue because the data structures are pretty raw, especially in the second case where all you have is long or integer arithmetics. That's still slower by a factor of three.
I'm starting to think that there might be something odd happening with the way LeetCode do the benchmarking in general because even in the C version of the integer reversing problem you get a huge bump in running time from just replacing the line if (rev>(-1U >> 1) || rev < (1 << 31)) { with if (rev>INT_MAX || rev < INT_MIN) {
Now, I suppose having to #include<limits.h>
might have something to do with that but it seems a bit extreme that this simple change bumps the execution time from just 6 ms to 19 ms.