Below is an example (actually 2 different methods: V1/V2) how you can use one function that can internally use different types of std:: containers. Note that the type of container used can actually alter the outcome of the function (because of internal ordering of the container), which is what I show here. The function returnMaxPointV1/2 takes a bool argument and internally has partly generic code and partly specialized code. This is the opposite approach as using a template, where the function caller must be specialized (! at compile time !), but the function body is generic. Here the caller is generic (! at runtime !), but the body is specialized.
#include <vector>
#include <set>
#include <iostream>
#include <thread> // std::this_thread::sleep_for
#include <chrono> // std::chrono::seconds
struct Point2D {
int x1;
int x2;
bool operator < (const Point2D& rhs) const {
return x1-10*x2 < rhs.x1-10*rhs.x2;
}
};
Point2D points[4] = { { 10,2 },{ 2,2 },{ 0,1 },{ 10,4 } };
namespace returnMaxInlines
{
inline Point2D FindMax(Point2D a, Point2D b) {
return (a.x1 > b.x1) ? a : b;
}
}
/*
The function returnMaxPoint fills a container with points that satisfy the condition x2 >= 2.
You can select what kind of containter to use by using the bool containterTypeSet
the function then finds the point with maximum x1 in the container, but because
there are some points with the same x1 it will return the first one encountered,
which may be a different one depending on the container type,
because the points may be differently ordered in the container.
*/
Point2D returnMaxPointV1(bool containterTypeSet)
{
using namespace returnMaxInlines; // the inline function is only accessible locally in this function (because of the namespace)
Point2D maxPoint = { 0,0 };
if (containterTypeSet == true) {
std::set<Point2D> container;
for (int cnt = 0; cnt < 4; ++cnt) {
if (points[cnt].x2 >= 2) {
container.insert(points[cnt]);
}
}
for (auto it = container.begin(); it != container.end(); ++it) {
maxPoint = FindMax(maxPoint, *it); // this part of the code is generic for both cases of bool containterTypeSet, it is an inline function
}
}
else {
std::vector<Point2D> container;
for (int cnt = 0; cnt < 4; ++cnt) {
if (points[cnt].x2 >= 2) {
container.push_back(points[cnt]);
}
}
for (auto it = container.begin(); it != container.end(); ++it) {
maxPoint = FindMax(maxPoint, *it); // this part of the code is generic for both cases of bool containterTypeSet, it is an inline function
}
}
return maxPoint;
}
/* Alternative implementation
No inline function is needed, but you need to have all variables for both options declared in scope
and you need to add many if-statements, thus branching (but maybe the compiler can optimize this out (which will yield some kind of version V1)
*/
Point2D returnMaxPointV2(bool containterTypeSet)
{
Point2D maxPoint = { 0,0 };
std::set<Point2D> containerSet;
std::vector<Point2D> containerVector;
// specialized code
if (containterTypeSet) {
for (int cnt = 0; cnt < 4; ++cnt) {
if (points[cnt].x2 >= 2) {
containerSet.insert(points[cnt]);
}
}
}
else{
for (int cnt = 0; cnt < 4; ++cnt) {
if (points[cnt].x2 >= 2) {
containerVector.push_back(points[cnt]);
}
}
}
std::set<Point2D>::iterator SetIterator;
std::vector<Point2D>::iterator VectorIterator;
const Point2D *ScopePoint;
bool foolCompiler; // the compiler was tripping if both types of the tenary operator (?:) were not of the same type, so I made the statement such that the statement was of type bool.
for(foolCompiler = containterTypeSet? ((SetIterator = containerSet.begin()) == SetIterator): ((VectorIterator = containerVector.begin()) == VectorIterator);
containterTypeSet ? SetIterator != containerSet.end() : VectorIterator != containerVector.end();
foolCompiler = containterTypeSet ? ((SetIterator++) == SetIterator) : ((VectorIterator++) == VectorIterator)
){
ScopePoint = containterTypeSet ? &(*SetIterator) : &(*VectorIterator);
// generic code
maxPoint = (maxPoint.x1 > ScopePoint->x1) ? maxPoint : *ScopePoint;
}
return maxPoint;
}
int main()
{
Point2D result;
result = returnMaxPointV1(true);
std::cout << "result1: (" << result.x1 << "," << result.x2 << ")" << std::endl;
result = returnMaxPointV1(false);
std::cout << "result2: (" << result.x1 << "," << result.x2 << ")" << std::endl;
result = returnMaxPointV2(true);
std::cout << "result3: (" << result.x1 << "," << result.x2 << ")" << std::endl;
result = returnMaxPointV2(false);
std::cout << "result4: (" << result.x1 << "," << result.x2 << ")" << std::endl;
std::this_thread::sleep_for(std::chrono::seconds(10));
}
The output of the program is:
result1: (10,2)
result2: (10,4)
result3: (10,2)
result4: (10,4)