My data frame looks like something as follows:
unique.groups<- letters[1:5]
unique_timez<- 1:20
groups<- rep(unique.groups, each=20)
my.times<-rep(unique_timez, 5)
play.data<- data.frame(groups, my.times, y= rnorm(100), x=rnorm(100), POP= 1:100)
I would like to run the following weighted regression:
plm(y~x + factor(my.times) ,
data=play.data,
index=c('groups','my.times'), model='within', weights= POP)
But I do not believe the plm package allows for weights. The answer I'm looking for the coefficient from the model below:
fit.regular<- lm(y~x + factor(my.times) + factor(my.groups),
weights= POP, data= play.data)
desired.answer<- coefficients(fit.regular)
However, I am looking for an answer with the plm package because it is much faster to get the coefficient of the within estimator with plm with larger datasets and many groups.