I am a newbie in pandas datamining. I have GPS dataset that consists of timestamp, longitude and latitude values. My dataset looks like this.
In [3]:
import pandas as pd
import numpy as np
df = pd.read_csv('D:GPS.csv', index_col=None)
df
Out[3]:
time mLongitude mLongitude
0 2014-06-30 00:00:00 94.500000 126.998428
1 2014-06-30 00:00:00 94.500000 126.998428
2 2014-06-30 00:00:00 94.500000 126.998428
3 2014-06-30 00:00:00 94.500000 126.998428
4 2014-06-30 00:00:00 94.500000 126.998428
5 2014-06-30 00:00:00 94.500000 126.998428
6 2014-06-30 00:00:00 94.500000 126.998428
7 2014-06-30 00:00:00 94.500000 126.998428
8 2014-06-30 00:00:00 94.500000 126.998428
9 2014-06-30 00:00:00 94.500000 126.998428
10 2014-06-30 00:00:00 94.500000 126.998428
11 2014-06-30 00:00:00 94.500000 126.998428
12 2014-06-30 00:00:00 94.500000 126.998428
13 2014-06-30 00:00:00 94.500000 126.998428
14 2014-06-30 00:00:00 94.500000 126.998428
15 2014-06-30 00:00:00 94.500000 126.998428
... ... ... ...
9467 2014-08-02 00:00:00 44.299999 126.902259
9468 2014-08-02 00:00:00 44.299999 126.902259
9469 2014-08-02 00:00:00 44.299999 126.902259
9470 2014-08-02 00:00:00 44.299999 126.902259
9471 2014-08-02 00:00:00 44.299999 126.902259
9472 2014-08-02 00:00:00 44.299999 126.902259
In here, I want to calculate traveling distance for each day. And then the example of the output would be like this:
time distance (meter)
2014-06-30 1000
2014-07-01 500
.... ...
2014-08-02 1500