Consider, as an example, 5+7
:
5 = 101 (Base 2)
7 = 111 (Base 2)
Now consider adding the two (base 2) digits:
0+0 = 0 = 0 carry 0
1+0 = 1 = 1 carry 0
0+1 = 1 = 1 carry 0
1+1 = 10 = 0 carry 1
The sum (without carrying) of A+B
is A^B
and the carry is A&B
; and when you carry a number it is shifted one digit to the left (hence (A&B)<<1
).
So:
5 = 101 (Base 2)
7 = 111 (Base 2)
5^7 = 010 (sum without carrying)
5&7 = 101 (the carry shifted left)
Then we can recurse to add the carry:
A = 010
B = 1010
A^B = 1000 (sum without carrying)
A&B = 0010 (the carry shifted left)
Then we can recurse again as we still have more to carry:
A' = 1000
B' = 100 (without the leading zeros)
A'^B' = 1100 (sum without carrying)
A'&B' = 0000 (the carry shifted left)
Now there is nothing to carry - so we can stop and the answer is 1100 (base 2) = 12 (base 10)
.
The algorithm is just implementing decimal addition as (longhand) binary addition using the or
s to add and the bitshifted and
s to find the carry and will recurse until there is nothing more to carry (which will always occur as the bitshift appends another zero to the carry each time so with each recursion at least one more bit will not generate a carry value each time).