how the comparator is working
This is well documented:
Compare the two objects x and y and return an integer according to the outcome. The return value is negative if x < y, zero if x == y and strictly positive if x > y.
Instead of calling the cmp function you could have written:
sum_a=sum(a[1])
sum_b=sum(b[1])
if sum_a < sum_b:
return -1
elif sum_a == sum_b:
return 0
else:
return 1
which two values are being passed
From your print statements you can see the two values that are passed. Let's look at the first iteration:
((3, [1, 0, 0, 0, 1]), (2, [3, 4, 5]))
What you are printing here is a tuple (a, b), so the actual values passed into your comparison functions are
a = (3, [1, 0, 0, 0, 1])
b = (2, [3, 4, 5]))
By means of your function, you then compare the sum of the two lists in each tuple, which you denote sum_a and sum_b in your code.
and how many such comparisons would happen?
I guess what you are really asking: How does the sort work, by just calling a single function?
The short answer is: it uses the Timsort algorithm, and it calls the comparison function O(n * log n) times (note that the actual number of calls is c * n * log n, where c > 0).
To understand what is happening, picture yourself sorting a list of values, say v = [4,2,6,3]
. If you go about this systematically, you might do this:
- start at the first value, at index i = 0
- compare v[i] with v[i+1]
- If v[i+1] < v[i], swap them
- increase i, repeat from 2 until i == len(v) - 2
- start at 1 until no further swaps occurred
So you get, i =
0: 2 < 4 => [2, 4, 6, 3] (swap)
1: 6 < 4 => [2, 4, 6, 3] (no swap)
2: 3 < 6 => [2, 4, 3, 6] (swap)
Start again:
0: 4 < 2 => [2, 4, 3, 6] (no swap)
1: 3 < 4 => [2, 3, 4, 6] (swap)
2: 6 < 4 => [2, 3, 4, 6] (no swap)
Start again - there will be no further swaps, so stop. Your list is sorted. In this example we have run through the list 3 times, and there were 3 * 3 = 9 comparisons.
Obviously this is not very efficient -- the sort()
method only calls your comparator function 5 times. The reason is that it employs a more efficient sort algorithm than the simple one explained above.
Also the behavior seems to be very random.
Note that the sequence of values passed to your comparator function is not, in general, defined. However, the sort function does all the necessary comparisons between any two values of the iterable it receives.
Is it creating a sorted list of keys internally where it keeps track of each comparison made?
No, it is not keeping a list of keys internally. Rather the sorting algorithm essentially iterates over the list you give it. In fact it builds subsets of lists to avoid doing too many comparisons - there is a nice visualization of how the sorting algorithm works at Visualising Sorting Algorithms: Python's timsort by Aldo Cortesi