It is perfectly idiomatic C, and it actually has a (limited) practical use - although not one that is demonstrated by this example.
When you declare a function or other name at the usual global level, it is brought into scope for all function bodies in the code following the declaration. A declaration cannot be removed from a scope once it has been introduced. The function is permanently visible to the rest of the translation unit.
When you declare a function or other name within a braced block, the scope of the declaration is limited to that block. Declaring a function within the scope of another function will limit its visibility, and not pollute the global namespace or make it visible to any other functions defined in the same translation unit.
This is meaningless in the case of the example, because the definition of test
also brings it into scope for all following bodies - but if test
were defined in another translation unit, or even if it were defined only at the very bottom of this TU, hiding the declaration inside main
would protect any other functions defined afterwards from being able to see its name in their scope.
In practical terms this is of limited use - normally if you don't want a function to be visible, you put it in another translation unit (and preferably make it static
) - but you can probably contrive a situation where you might want to use this ability for constructing a module-loading system that doesn't export the original declarations of its components, or something like that (and the fact that this doesn't rely on static
/separate object files might potentially have some relevance to embedded/non-hosted target environments where the linking step might not work as it does on PC, allowing you to achieve a measure of namespace protection in a purely-#include
-based build system).
Example:
struct module {
void * (* alloc)(size_t);
void (* dealloc)(void *);
} loaded_module;
int main(void) {
if (USE_GC) { // dynamically choose the allocator system
void * private_malloc_gc(size_t);
void private_free_noop(void *);
loaded_module = (struct module){ private_malloc_gc, private_free_noop };
} else {
void * private_malloc(size_t);
void private_free(void *);
loaded_module = (struct module){ private_malloc, private_free };
}
do_stuff();
//...
}
// cannot accidentally bypass the module and manually use the wrong dealloc
void do_stuff(void) {
int * nums = module.alloc(sizeof(int) * 32)
//...
module.dealloc(nums);
}
#include "allocator_implementations.c"