I am currently learning assembly programming as part of one of my university modules. I have a program written in C++ with inline x86 assembly which takes a string of 6 characters and encrypts them based on the encryption key.
Here's the full program: https://gist.github.com/anonymous/1bb0c3be77566d9b791d
My code fo the encrypt_chars
function:
void encrypt_chars (int length, char EKey)
{ char temp_char; // char temporary store
for (int i = 0; i < length; i++) // encrypt characters one at a time
{
temp_char = OChars [i]; // temp_char now contains the address values of the individual character
__asm
{
push eax // Save values contained within register to stack
push ecx
movzx ecx, temp_char
push ecx // Push argument #2
lea eax, EKey
push eax // Push argument #1
call encrypt
add esp, 8 // Clean parameters of stack
mov temp_char, al // Move the temp character into a register
pop ecx
pop eax
}
EChars [i] = temp_char; // Store encrypted char in the encrypted chars array
}
return;
// Inputs: register EAX = 32-bit address of Ekey,
// ECX = the character to be encrypted (in the low 8-bit field, CL).
// Output: register EAX = the encrypted value of the source character (in the low 8-bit field, AL).
__asm
{
encrypt:
push ebp // Set stack
mov ebp, esp // Set up the base pointer
mov eax, [ebp + 8] // Move value of parameter 1 into EAX
mov ecx, [ebp + 12] // Move value of parameter 2 into ECX
push edi // Used for string and memory array copying
push ecx // Loop counter for pushing character onto stack
not byte ptr[eax] // Negation
add byte ptr[eax], 0x04 // Adds hex 4 to EKey
movzx edi, byte ptr[eax] // Moves value of EKey into EDI using zeroes
pop eax // Pop the character value from stack
xor eax, edi // XOR character to give encrypted value of source
pop edi // Pop original address of EDI from the stack
rol al, 1 // Rotates the encrypted value of source by 1 bit (left)
rol al, 1 // Rotates the encrypted value of source by 1 bit (left) again
add al, 0x04 // Adds hex 4 to encrypted value of source
mov esp, ebp // Deallocate values
pop ebp // Restore the base pointer
ret
}
//--- End of Assembly code
}
My questions are:
- What is the best/ most efficient way to convert this
for loop
into assembly? - Is there a way to remove the call for
encrypt
and place the code directly in its place? - How can I optimise/minimise the use of registers and instructions to make the code smaller and potentially faster?
- Is there a way for me to convert the
OChars
andEChars
arrays into assembly?
If possible, would you be able to provide me with an explanation of how the solution works as I am eager to learn.