This is a small sample of my data.frame
naiveBayesPrediction knnPred5 knnPred10 dectreePrediction logressionPrediction correctClass
1 non-bob 2 2 non-bob 0.687969711847463 1
2 non-bob 2 2 non-bob 0.85851872253358 1
3 non-bob 1 1 non-bob 0.500470892627383 1
4 non-bob 1 1 non-bob 0.77762739066215 1
5 non-bob 1 2 non-bob 0.556431439357365 1
6 non-bob 1 2 non-bob 0.604868385598237 1
7 non-bob 2 2 non-bob 0.554624186182919 1
I have factored everything
'data.frame': 505 obs. of 6 variables:
$ naiveBayesPrediction: Factor w/ 2 levels "bob","non-bob": 2 2 2 2 2 2 2 2 2 2 ...
$ knnPred5 : Factor w/ 2 levels "1","2": 2 2 1 1 1 1 2 1 2 1 ...
$ knnPred10 : Factor w/ 2 levels "1","2": 2 2 1 1 2 2 2 1 2 2 ...
$ dectreePrediction : Factor w/ 1 level "non-bob": 1 1 1 1 1 1 1 1 1 1 ...
$ logressionPrediction: Factor w/ 505 levels "0.205412826873861",..: 251 415 48 354 92 145 90 123 28 491 ...
$ correctClass : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
I then tried to ensemble it using neuralnet
ensembleModel <- neuralnet(correctClass ~ naiveBayesPrediction + knnPred5 + knnPred10 + dectreePrediction + logressionPrediction, data=allClassifiers[ensembleTrainSample,])
Error in neurons[[i]] %*% weights[[i]] : requires numeric/complex matrix/vector arguments
I then tried to put in a matrix
m <- model.matrix( correctClass ~ naiveBayesPrediction + knnPred5 + knnPred10 + dectreePrediction + logressionPrediction, data = allClassifiers )
Error in
contrasts<-
(*tmp*
, value = contr.funs[1 + isOF[nn]]) :
contrasts can be applied only to factors with 2 or more levels
I think it must be something to do with the one feature "decistreePrediction" only having 1 level but it only finds one level out of 2 possible outcomes (bob or non-bob) so I have no idea where to go from there.