so I have a question about an algorithm I'm supposed to "invent"/"find". It's an algorithm which calculates 2^(n) - 1 for Ө(n^n) and Ө(1) and Ө(n).
I was thinking for several hours but I couldn't find any solution for both tasks (the first ones while the last one was the easist imo, I posted the algorithm below). But I'm not skilled enough to "invent"/"find" one for a very slow and very fast algorithm.
So far my algorithms are (In Pseudocode):
The one for Ө(n)
int f(int n) {
int number = 2
if(n = 0) then return 0
if(n==1) then return 1
while(n > 1)
number = number * 2
n--
number = number - 1
return number
A simple one and kinda obvious one which uses recursion though I don't know how fast it is (It would be nice if someone could tell me that):
int f(int n) {
if(n==0) then return 0
if(n==1) then return 1
return 3*f(n-1) - 2*f(n-2)
}