Being Python, it usually better to return a generator that will return an infinite sequence of primes rather than a list.
ActiveState has a list of older Sieve of Eratosthenes recipes
Here is one of them updated to Python 2.7 using itertools count with a step argument which did not exist when the original recipe was written:
import itertools as it
def sieve():
""" Generate an infinite sequence of prime numbers.
"""
yield 2
D = {}
for q in it.count(3, 2): # start at 3 and step by odds
p = D.pop(q, 0)
if p:
x = q + p
while x in D: x += p
D[x] = p # new composite found. Mark that
else:
yield q # q is a new prime since no composite was found
D[q*q] = 2*q
Since it is a generator, it is much more memory efficient than generating an entire list. Since it locates composite, it is computationally efficient as well.
Run this:
>>> g=sieve()
Then each subsequent call returns the next prime:
>>> next(g)
2
>>> next(g)
3
# etc
You can then get a list between boundaries (i.e., the Xth prime from the first to the X+Y prime...) by using islice:
>>> tgt=0
>>> tgt, list(it.islice(sieve(), tgt, tgt+10))
(0, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29])
>>> tgt=1000000
>>> tgt, list(it.islice(sieve(), tgt, tgt+10))
(1000000, [15485867, 15485917, 15485927, 15485933, 15485941, 15485959, 15485989, 15485993, 15486013, 15486041])