I am faced with an application where I have to design a container that has random access (or at least better than O(n)) has inexpensive (O(1)) insert and removal, and stores the data according to the order (rank) specified at insertion.
For example if I have the following array:
[2, 9, 10, 3, 4, 6]
I can call the remove on index 2 to remove 10 and I can also call the insert on index 1 by inserting 13.
After those two operations I would have:
[2, 13, 9, 3, 4, 6]
The numbers are stored in a sequence and insert/remove operations require an index parameter to specify where the number should be inserted or which number should be removed.
My question is, what kind of data structures, besides a Linked List and a vector, could maintain something like this? I am leaning towards a Heap that prioritizes on the next available index. But I have been seeing something about a Fusion Tree being useful (but more in a theoretical sense).
What kind of Data structures would give me the most optimal running time while still keeping memory consumption down? I have been playing around with an insertion order preserving hash table, but it has been unsuccessful so far.
The reason I am tossing out using a std:: vector straight up is because I must construct something that out preforms a vector in terms of these basic operations. The size of the container has the potential to grow to hundreds of thousands of elements, so committing to shifts in a std::vector is out of the question. The same problem lines with a Linked List (even if doubly Linked), traversing it to a given index would take in the worst case O (n/2), which is rounded to O (n).
I was thinking of a doubling linked list that contained a Head, Tail, and Middle pointer, but I felt that it wouldn't be much better.