I am a newbie when it comes to using python libraries for numerical tasks. I was reading a paper on LexRank and wanted to know how to compute eigenvectors of a transition matrix. I used the eigval
function and got a result that I have a hard time interpreting:
a = numpy.zeros(shape=(4,4))
a[0,0]=0.333
a[0,1]=0.333
a[0,2]=0
a[0,3]=0.333
a[1,0]=0.25
a[1,1]=0.25
a[1,2]=0.25
a[1,3]=0.25
a[2,0]=0.5
a[2,1]=0.0
a[2,2]=0.0
a[2,3]=0.5
a[3,0]=0.0
a[3,1]=0.333
a[3,2]=0.333
a[3,3]=0.333
print LA.eigval(a)
and the eigenvalue is:
[ 0.99943032+0.j
-0.13278637+0.24189178j
-0.13278637-0.24189178j
0.18214242+0.j ]
Can anyone please explain what j
is doing here? Isn't the eigenvalue supposed to be a scalar quantity? How can I interpret this result broadly?