First, you should understand what tail call is about.
Tail call are call that do not consumes stack.
Now you need to recognize when your are consuming stack.
Let's take the factorial example:
(defun factorial (n)
(if (= n 1)
1
(* n (factorial (- n 1)))))
Here is the non-tail recursive implementation of factorial.
Why? This is because in addition to a return from factorial, there is a pending computation.
(* n ..)
So you are stacking n each time you call factorial.
Now let's write the tail recursive factorial:
(defun factorial-opt (n &key (result 1))
(if (= n 1)
result
(factorial-opt (- n 1) :result (* result n))))
Here, the result is passed as an argument to the function.
So you're also consuming stack, but the difference is that the stack size stays constant.
Thus, the compiler can optimize it by using only registers and leaving the stack empty.
The factorial-opt
is then faster, but is less readable.
factorial
is limited to the size of the stack will factorial-opt
is not.
So you should learn to recognize tail recursive function in order to know if the recursion is limited.
There might be some compiler technique to transform a non-tail recursive function into a tail recursive one. Maybe someone could point out some link here.