I'm trying to fit a surface model to a 3D data-set (x,y,z) using matplotlib.
Where z = f(x,y)
.
So, I'm going for the quadratic fitting with equation:
f(x,y) = ax^2+by^2+cxy+dx+ey+f
So far, I have successfully plotted the 3d-fitted-surface using least-square method using:
# best-fit quadratic curve
A = np.c_[np.ones(data.shape[0]), data[:,:2], np.prod(data[:,:2], axis=1), data[:,:2]**2]
C,_,_,_ = scipy.linalg.lstsq(A, data[:,2])
#evaluating on grid
Z = np.dot(np.c_[np.ones(XX.shape), XX, YY, XX*YY, XX**2, YY**2], C).reshape(X.shape)
But, how can I be able to print/get the fitted equation of the surface(with coefficient values) ?
I little help will be highly appreciated.
thank you.