I ended up finding success using the Eigen library, combined with Emscripten.
Right now, my test code is hard-coded to 5x5 matrices, but that's just a matter of template arguments.
I'm passing data to and from the function by using row major 1D arrays.
The code looks something like:
#include <Eigen/Eigenvalues>
#typedef double ArrayMat5d[25];
#typedef double ArrayVec5d[5];
#typedef Eigen::Matrix<double, 5, 5, Eigen::RowMajor> Matrix5dR;
#typedef Eigen::Matrix<double, 5, 1> Vector5d;
extern "C" void eig(const ArrayMat5d A, const ArrayMat5d B,
ArrayMat5d V, ArrayVec5d D) {
Eigen::Map<const Matrix5dR> a(A);
Eigen::Map<const Matrix5dR> b(B);
const Eigen::GeneralizedSelfAdjointEigenSolver<Matrix5dR> solver(a, b);
Eigen::Map<Matrix5dR> v(V);
Eigen::Map<Vector5d> d(D);
v = solver.eigenvectors();
d = solver.eigenvalues();
}
And I'm compiling the code using:
emcc -I /usr/include/eigen3 -O2 -o eig.js -s "DISABLE_EXCEPTION_CATCHING = 1" \
-s "NO_FILESYSTEM = 1" -s "NO_BROWSER = 1" -s "EXPORTED_FUNCTIONS = ['_eig']" \
-s "NO_EXIT_RUNTIME = 1" eig.cpp
From the JavaScript side:
// builds reference to eig function with argument type checking
var eig = Module.cwrap('eig', null, ['number', 'number', 'number', 'number']);
// sets up the two matrices
var P = new Float64Array([ 92.31360, 11.75040, -15.84640, -21.88800, -0.83200, 11.75040, 15.76960, -4.37760, -0.83200, 2.11200, -15.84640, -4.37760, 4.24960, 2.11200, -1.15200, -21.88800, -0.83200, 2.11200, 15.04000, -1.44000, -0.83200, 2.11200, -1.15200, -1.44000, -2.24000 ]);
var Q = new Float64Array([ 60.16, -2.88, 0.0, 0.0, 0.0, -2.88, 17.28, -2.88, 0.0, 0.0, 0.0, -2.88, 8.96, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 ]);
// allocates memory for input and output matrices
var matLength = 25;
var vecLength = 5;
var matSize = matLength * P.BYTES_PER_ELEMENT;
var vecSize = vecLength * P.BYTES_PER_ELEMENT;
var Pptr = Module._malloc(matSize);
var Qptr = Module._malloc(matSize);
var Vptr = Module._malloc(matSize);
var Dptr = Module._malloc(vecSize);
// gets references to Emscripten heap
var Pheap = new Uint8Array(Module.HEAPU8.buffer, Pptr, matSize);
var Qheap = new Uint8Array(Module.HEAPU8.buffer, Qptr, matSize);
var Vheap = new Uint8Array(Module.HEAPU8.buffer, Vptr, matSize);
var Dheap = new Uint8Array(Module.HEAPU8.buffer, Dptr, vecSize);
// copies input matrices into Emscripten heap
Pheap.set(new Uint8Array(P.buffer));
Qheap.set(new Uint8Array(Q.buffer));
// calls the function (finally!)
eig(Pheap.byteOffset, Qheap.byteOffset, Vheap.byteOffset, Dheap.byteOffset);
// Gets double views into Emscripten heap containing results
var Vresult = new Float64Array(Vheap.buffer, Vheap.byteOffset, P.length);
var Dresult = new Float64Array(Dheap.buffer, Dheap.byteOffset, vecLength);
console.log(Vresult);
console.log(Dresult);
// Frees up allocated memory
Module._free(Pheap.byteOffset);
Module._free(Qheap.byteOffset);
Module._free(Vheap.byteOffset);
Module._free(Dheap.byteOffset);
The whole thing works quite well. At level -O2
, I'm getting times of about 800 ms to run 10000 iterations, and the results exactly match my original C++ test code. (It's just about exactly 10x slower at -O0
.)
Now to finish that ellipse fit!