PIL does have some handy image manipulation methods,
but also a lot of shortcomings when one wants
to start doing serious image processing -
Most Python lterature will recomend you to switch
to use NumPy over your pixel data, wich will give
you full control -
Other imaging libraries such as leptonica, gegl and vips
all have Python bindings and a range of nice function
for image composition/segmentation.
In this case, the thing is to imagine how one would
get to the desired output in an image manipulation program:
You'd have a black (or other color) shade to place over
the original image, and over this, paste the second image,
but using a threshold (i.e. a pixel either is equal or
is different - all intermediate values should be rounded
to "different) of the differences as a mask to the second image.
I modified your function to create such a composition -
from PIL import Image, ImageChops, ImageDraw
point_table = ([0] + ([255] * 255))
def new_gray(size, color):
img = Image.new('L',size)
dr = ImageDraw.Draw(img)
dr.rectangle((0,0) + size, color)
return img
def black_or_b(a, b, opacity=0.85):
diff = ImageChops.difference(a, b)
diff = diff.convert('L')
# Hack: there is no threshold in PILL,
# so we add the difference with itself to do
# a poor man's thresholding of the mask:
#(the values for equal pixels- 0 - don't add up)
thresholded_diff = diff
for repeat in range(3):
thresholded_diff = ImageChops.add(thresholded_diff, thresholded_diff)
h,w = size = diff.size
mask = new_gray(size, int(255 * (opacity)))
shade = new_gray(size, 0)
new = a.copy()
new.paste(shade, mask=mask)
# To have the original image show partially
# on the final result, simply put "diff" instead of thresholded_diff bellow
new.paste(b, mask=thresholded_diff)
return new
a = Image.open('a.png')
b = Image.open('b.png')
c = black_or_b(a, b)
c.save('c.png')