I know this question is old; but I wanted to do a similar thing, I created a simple framework which helps you read and process a large file in parallel. Leaving what I tried as an answer.
This is the code, I give an example in the end
def chunkify_file(fname, size=1024*1024*1000, skiplines=-1):
"""
function to divide a large text file into chunks each having size ~= size so that the chunks are line aligned
Params :
fname : path to the file to be chunked
size : size of each chink is ~> this
skiplines : number of lines in the begining to skip, -1 means don't skip any lines
Returns :
start and end position of chunks in Bytes
"""
chunks = []
fileEnd = os.path.getsize(fname)
with open(fname, "rb") as f:
if(skiplines > 0):
for i in range(skiplines):
f.readline()
chunkEnd = f.tell()
count = 0
while True:
chunkStart = chunkEnd
f.seek(f.tell() + size, os.SEEK_SET)
f.readline() # make this chunk line aligned
chunkEnd = f.tell()
chunks.append((chunkStart, chunkEnd - chunkStart, fname))
count+=1
if chunkEnd > fileEnd:
break
return chunks
def parallel_apply_line_by_line_chunk(chunk_data):
"""
function to apply a function to each line in a chunk
Params :
chunk_data : the data for this chunk
Returns :
list of the non-None results for this chunk
"""
chunk_start, chunk_size, file_path, func_apply = chunk_data[:4]
func_args = chunk_data[4:]
t1 = time.time()
chunk_res = []
with open(file_path, "rb") as f:
f.seek(chunk_start)
cont = f.read(chunk_size).decode(encoding='utf-8')
lines = cont.splitlines()
for i,line in enumerate(lines):
ret = func_apply(line, *func_args)
if(ret != None):
chunk_res.append(ret)
return chunk_res
def parallel_apply_line_by_line(input_file_path, chunk_size_factor, num_procs, skiplines, func_apply, func_args, fout=None):
"""
function to apply a supplied function line by line in parallel
Params :
input_file_path : path to input file
chunk_size_factor : size of 1 chunk in MB
num_procs : number of parallel processes to spawn, max used is num of available cores - 1
skiplines : number of top lines to skip while processing
func_apply : a function which expects a line and outputs None for lines we don't want processed
func_args : arguments to function func_apply
fout : do we want to output the processed lines to a file
Returns :
list of the non-None results obtained be processing each line
"""
num_parallel = min(num_procs, psutil.cpu_count()) - 1
jobs = chunkify_file(input_file_path, 1024 * 1024 * chunk_size_factor, skiplines)
jobs = [list(x) + [func_apply] + func_args for x in jobs]
print("Starting the parallel pool for {} jobs ".format(len(jobs)))
lines_counter = 0
pool = mp.Pool(num_parallel, maxtasksperchild=1000) # maxtaskperchild - if not supplied some weird happend and memory blows as the processes keep on lingering
outputs = []
for i in range(0, len(jobs), num_parallel):
print("Chunk start = ", i)
t1 = time.time()
chunk_outputs = pool.map(parallel_apply_line_by_line_chunk, jobs[i : i + num_parallel])
for i, subl in enumerate(chunk_outputs):
for x in subl:
if(fout != None):
print(x, file=fout)
else:
outputs.append(x)
lines_counter += 1
del(chunk_outputs)
gc.collect()
print("All Done in time ", time.time() - t1)
print("Total lines we have = {}".format(lines_counter))
pool.close()
pool.terminate()
return outputs
Say for example, I have a file in which I want to count the number of words in each line, then the processing of each line would look like
def count_words_line(line):
return len(line.strip().split())
and then call the function like:
parallel_apply_line_by_line(input_file_path, 100, 8, 0, count_words_line, [], fout=None)
Using this, I get a speed up of ~8 times as compared to vanilla line by line reading on a sample file of size ~20GB in which I do some moderately complicated processing on each line.