To demonstrate the point I made in my comment, here is an example of what I think you're trying to do (deduced from comments).
I have provided both duck-typed and polymorphic solutions in the same program with a timed run through each.
I use 10 million samples of each to eliminate memory cache noise.
You will notice that the run time of the polymorphic solution is significantly less than that of the duck-typed solution.
#ifdef _WIN32
#include <Windows.h>
double get_cpu_time(){
FILETIME a,b,c,d;
if (GetProcessTimes(GetCurrentProcess(),&a,&b,&c,&d) != 0){
// Returns total user time.
// Can be tweaked to include kernel times as well.
return
(double)(d.dwLowDateTime |
((unsigned long long)d.dwHighDateTime << 32)) * 0.0000001;
}else{
// Handle error
return 0;
}
}
#else
#include <sys/time.h>
inline double get_cpu_time() noexcept {
return (double)clock() / CLOCKS_PER_SEC;
}
#endif
#include <iostream>
#include <vector>
#include <memory>
struct A
{
A(bool copy_) : copy{copy_} {}
virtual ~A() = default;
const bool copy = false;
};
struct RealA : public A
{
RealA() : A { false } {}
};
struct CopyA : public A
{
CopyA() : A { true } {}
};
// A Thing holder will hold any object which has an interface supports do_something_to(T& thing)
struct AHolder {
template<class Thing>
AHolder(std::unique_ptr<Thing> ptr)
: _ptr { std::move(ptr) }
{
}
template<class Thing, class...Args>
static AHolder construct(Args&&...args)
{
return AHolder { std::make_unique<model<Thing>>(std::forward<Args>(args)...) };
}
void do_something() const {
_ptr->do_something();
}
private:
struct concept {
virtual ~concept() = default;
virtual void do_something() = 0;
};
template<class Thing> struct model : concept {
template<class...Args>
model(Args&&...args) : _thing { std::forward<Args>(args)... } {}
private:
void do_something() override {
do_something_to(_thing);
}
Thing _thing;
};
std::unique_ptr<concept> _ptr;
};
using namespace std;
size_t copies_processed = 0;
size_t reals_processed = 0;
void do_something_to(const CopyA&)
{
// simulate work
++copies_processed;
}
void do_something_to(const RealA&)
{
// simulate work
++reals_processed;
}
int main(int argc, char **argv) {
std::vector<std::unique_ptr<A>> duck_typing;
std::vector<AHolder> polymorphic;
constexpr size_t samples = 10000000;
for (size_t i = 0 ; i < samples ; ++i) {
if (i % 2) {
duck_typing.push_back(make_unique<RealA>());
polymorphic.emplace_back(AHolder::construct<RealA>());
}
else {
duck_typing.push_back(make_unique<CopyA>());
polymorphic.emplace_back(AHolder::construct<CopyA>());
}
}
auto duck_start = get_cpu_time();
// nasty duck-typing solution
for (const auto& ptr : duck_typing) {
if (ptr->copy) {
do_something_to(*(static_cast<CopyA*>(ptr.get())));
}
else {
do_something_to(*(static_cast<RealA*>(ptr.get())));
}
}
auto duck_stop = get_cpu_time();
auto poly_start = get_cpu_time();
for (const auto& a_like : polymorphic) {
a_like.do_something();
}
auto poly_stop = get_cpu_time();
cout << "duck typing : " << duck_stop - duck_start << endl;
cout << "polymorphic : " << poly_stop - poly_start << endl;
cout << "copies processed : " << copies_processed << endl;
cout << "reals processed : " << reals_processed << endl;
return 0;
}
sample output :
duck typing : 0.162985
polymorphic : 0.137561
copies processed : 10000000
reals processed : 10000000