I get how the DFT via correlation works, and use that as a basis for understanding the results of the FFT. If I have a discrete signal that was sampled at 44.1kHz, then that means if I were to take 1s of data, I would have 44,100 samples. In order to run the FFT on that, I would have to have an array of 44,100 and a DFT with N=44,100 in order to get the resolution necessary to detect a frequencies up to 22kHz, right? (Because the FFT can only correlate the input with sinusoidal components up to a frequency of N/2)
That's obviously a lot of data points and calculation time, and I have read that this is where the Short-time FT (STFT) comes in. If I then take the first 1024 samples (~23ms) and run the FFT on that, then take an overlapping 1024 samples, I can get the continuous frequency domain of the signal every 23ms. Then how do I interpret the output? If the output of the FFT on static data is N/2 data points with fs/(N/2) bandwidth, what is the bandwidth of the STFT's frequency output?
Here's an example that I ran in Mathematica:
100Hz sine wave at 44.1kHz sample rate:
Then I run the FFT on only the first 1024 points:
The frequency of interest is then at data point 3, which should somehow correspond to 100Hz. I think 44100/1024 = 43 is something like a scaling factor, which means that a signal with 1Hz in this little window will then correspond to a signal of 43Hz in the full data array. However, this would give me an output of 43Hz*3 = 129Hz. Is my logic correct but not my implementation?