I made a class that can add, multiply and divide fractions which is presented below
class fraction
{
unsigned long long num, denom;
public:
fraction(int n, int d): num{n}, denom{d} {};
fraction& operator+=(fraction frac);
fraction& operator*=(fraction frac);
fraction& operator/=(fraction frac);
friend ostream& operator<<(ostream& os, const fraction& frac);
};
fraction& fraction::operator+=(fraction frac)
{
unsigned long long least_mult = lcm(denom, frac.denom); // Least-Common Multiple
num *= least_mult/denom;
num += frac.num*least_mult/frac.denom,
denom = least_mult;
return *this;
}
fraction& fraction::operator*=(fraction frac)
{
num *= frac.num;
denom *= frac.denom;
return *this;
}
fraction& fraction::operator/=(fraction frac)
{
num *= frac.denom;
denom *= frac.num;
return *this;
}
ostream& operator<<(ostream& os, const fraction& frac)
{
os << frac.num << '/' << frac.denom;
return os;
}
fraction operator+(fraction a, fraction b) {return a+=b;}
fraction operator*(fraction a, fraction b) {return a*=b;}
fraction operator/(fraction a, fraction b) {return a/=b;
}
When I try to compute square root two convergence using sqrt_two = 1 + 1/(1+sqrt_two)
recursive relation when I get up to 4478554083/3166815962, the next value is 8399386631/7645270045 which is totally off as it is about 1.098, and therefore all the subsequent values are wrong too.
int main()
{
fraction one(1, 1), sqrt_two(3,2);
for(int i = 1; i < 50; ++i)
{
sqrt_two = one + one/(one+sqrt_two);
cout << sqrt_two << endl;
}
return 0;
}
I have tried 1+1/(1+8399386631/7645270045)) manually on a calculator and the result is still a square root convergent.