I wrote a small Spark application which should measure the time that Spark needs to run an action on a partitioned RDD (combineByKey function to sum a value).
My problem is, that the first iteration seems to work correctly (calculated duration ~25 ms), but the next ones take much less time (~5 ms). It seems to me, that Spark persists the data without any request to do so!? Can I avoid that programmatically?
I have to know the duration that Spark needs to calculate a new RDD (without any caching / persisting of earlier iterations) --> I think the duration should always be about 20-25 ms!
To ensure the recalculation I moved the SparkContext generation into the for-loops, but this didn't bring any changes...
Thanks for your advices!
Here my code which seems to persist any data:
public static void main(String[] args) {
switchOffLogging();
// jetzt
try {
// Setup: Read out parameters & initialize SparkContext
String path = args[0];
SparkConf conf = new SparkConf(true);
JavaSparkContext sc;
// Create output file & writer
System.out.println("\npar.\tCount\tinput.p\tcons.p\tTime");
// The RDDs used for the benchmark
JavaRDD<String> input = null;
JavaPairRDD<Integer, String> pairRDD = null;
JavaPairRDD<Integer, String> partitionedRDD = null;
JavaPairRDD<Integer, Float> consumptionRDD = null;
// Do the tasks iterative (10 times the same benchmark for testing)
for (int i = 0; i < 10; i++) {
boolean partitioning = true;
int partitionsCount = 8;
sc = new JavaSparkContext(conf);
setS3credentials(sc, path);
input = sc.textFile(path);
pairRDD = mapToPair(input);
partitionedRDD = partition(pairRDD, partitioning, partitionsCount);
// Measure the duration
long duration = System.currentTimeMillis();
// Do the relevant function
consumptionRDD = partitionedRDD.combineByKey(createCombiner, mergeValue, mergeCombiners);
duration = System.currentTimeMillis() - duration;
// So some action to invoke the calculation
System.out.println(consumptionRDD.collect().size());
// Print the results
System.out.println("\n" + partitioning + "\t" + partitionsCount + "\t" + input.partitions().size() + "\t" + consumptionRDD.partitions().size() + "\t" + duration + " ms");
input = null;
pairRDD = null;
partitionedRDD = null;
consumptionRDD = null;
sc.close();
sc.stop();
}
} catch (Exception e) {
e.printStackTrace();
System.out.println(e.getMessage());
}
}
Some helper functions (should not be the problem):
private static void switchOffLogging() {
Logger.getLogger("org").setLevel(Level.OFF);
Logger.getLogger("akka").setLevel(Level.OFF);
}
private static void setS3credentials(JavaSparkContext sc, String path) {
if (path.startsWith("s3n://")) {
Configuration hadoopConf = sc.hadoopConfiguration();
hadoopConf.set("fs.s3n.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem");
hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem");
hadoopConf.set("fs.s3n.awsAccessKeyId", "mycredentials");
hadoopConf.set("fs.s3n.awsSecretAccessKey", "mycredentials");
}
}
// Initial element
private static Function<String, Float> createCombiner = new Function<String, Float>() {
public Float call(String dataSet) throws Exception {
String[] data = dataSet.split(",");
float value = Float.valueOf(data[2]);
return value;
}
};
// merging function for a new dataset
private static Function2<Float, String, Float> mergeValue = new Function2<Float, String, Float>() {
public Float call(Float sumYet, String dataSet) throws Exception {
String[] data = dataSet.split(",");
float value = Float.valueOf(data[2]);
sumYet += value;
return sumYet;
}
};
// function to sum the consumption
private static Function2<Float, Float, Float> mergeCombiners = new Function2<Float, Float, Float>() {
public Float call(Float a, Float b) throws Exception {
a += b;
return a;
}
};
private static JavaPairRDD<Integer, String> partition(JavaPairRDD<Integer, String> pairRDD, boolean partitioning, int partitionsCount) {
if (partitioning) {
return pairRDD.partitionBy(new HashPartitioner(partitionsCount));
} else {
return pairRDD;
}
}
private static JavaPairRDD<Integer, String> mapToPair(JavaRDD<String> input) {
return input.mapToPair(new PairFunction<String, Integer, String>() {
public Tuple2<Integer, String> call(String debsDataSet) throws Exception {
String[] data = debsDataSet.split(",");
int houseId = Integer.valueOf(data[6]);
return new Tuple2<Integer, String>(houseId, debsDataSet);
}
});
}
And finally the output of the Spark console:
part. Count input.p cons.p Time
true 8 6 8 20 ms
true 8 6 8 23 ms
true 8 6 8 7 ms // Too less!!!
true 8 6 8 21 ms
true 8 6 8 13 ms
true 8 6 8 6 ms // Too less!!!
true 8 6 8 5 ms // Too less!!!
true 8 6 8 6 ms // Too less!!!
true 8 6 8 4 ms // Too less!!!
true 8 6 8 7 ms // Too less!!!