First of all - yes, I have read several posts here on SO, as well as other places about estimating the complexity of an algorithm.
I have read this, this and this, as well as others
I want to try with an algorithm I wrote that finds the largest rectangle, to see if I understood anything at all from what I've read.
public static long getLargestRectangle(long[] arr, int index, long max) {
int count = 1; //1 step * 1
int i = index - 1; //1 step * 1
int j = index + 1; //1 step * 1
if(index == arr.length-1) return max; //1 step * 2
while(i > -1 && arr[index] <= arr[i]) { //1 step * (N+1)
count++; //1 step * N
i--; //1 step * N
}
while(j <= arr.length-1 && arr[index] <= arr[j]) { //1 step * (N+1)
count++; //1 step * N
j++; //1 step * N
}
max = (max < (arr[index] * count) ? (arr[index] * count) : max); //1 step * 7
return getLargestRectangle(arr, index + 1, max); //1 step * 1
}
//total number of steps: 1 + 1 + 1 + (N + 1) + N + N + (N + 1) + N + N + 7
//=> 6N + 12 = O(N) ?
Am I way off here? I'd love some insight.
EDIT
Like this?
T(n) = O(N) + T(n+1)
T(n) = O(N) + O(N) + T(n+2)
T(n) = O(N) + O(N) + O(N) + T(n+3)
T(n) = i * O(N) + (n+i)
T(n) = n * O(N) + (n+n)
= O(N^2)
If this is wrong, I'd really appreciate if you could update your answer and show me.