const int BitTable[64] = {
63, 30, 3, 32, 25, 41, 22, 33, 15, 50, 42, 13, 11, 53, 19, 34, 61, 29, 2,
51, 21, 43, 45, 10, 18, 47, 1, 54, 9, 57, 0, 35, 62, 31, 40, 4, 49, 5, 52,
26, 60, 6, 23, 44, 46, 27, 56, 16, 7, 39, 48, 24, 59, 14, 12, 55, 38, 28,
58, 20, 37, 17, 36, 8
};
int pop_1st_bit(uint64 *bb) {
uint64 b = *bb ^ (*bb - 1);
unsigned int fold = (unsigned) ((b & 0xffffffff) ^ (b >> 32));
*bb &= (*bb - 1);
return BitTable[(fold * 0x783a9b23) >> 26];
}
uint64 index_to_uint64(int index, int bits, uint64 m) {
int i, j;
uint64 result = 0ULL;
for(i = 0; i < bits; i++) {
j = pop_1st_bit(&m);
if(index & (1 << i)) result |= (1ULL << j);
}
return result;
}
It's from the Chess Programming Wiki:
https://www.chessprogramming.org/Looking_for_Magics
It's part of some code for finding magic numbers.
The argument uint64 m
is a bitboard representing the possible blocked squares for either a rook or bishop move. Example for a rook on the e4 square:
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
The edge squares are zero because they always block, and reducing the number of bits needed is apparently helpful.
/* Bitboard, LSB to MSB, a1 through h8:
* 56 - - - - - - 63
* - - - - - - - -
* - - - - - - - -
* - - - - - - - -
* - - - - - - - -
* - - - - - - - -
* - - - - - - - -
* 0 - - - - - - 7
*/
So in the example above, index_to_uint64
takes an index (0 to 2^bits), and the number of bits set in the bitboard (10), and the bitboard.
It then pops_1st_bit
for each number of bits, followed by another shifty bit of code. pops_1st_bit
XORs the bitboard with itself minus one (why?). Then it ANDs it with a full 32-bits, and somewhere around here my brain runs out of RAM. Somehow the magical hex number 0x783a9b23 is involved (is that the number sequence from Lost?). And there is this ridiculous mystery array of randomly ordered numbers from 0-63 (BitTable[64]
).