A LRE (linear recurrence equation) can be converted into a matrix multiply. In this case:
F(0) = | 1 | (the current LRE value)
| 1 | (this is just copied, used for the + 4)
M = | 3 4 | (calculates LRE to new 1st number)
| 0 1 | (copies previous 2nd number to new 2nd number (the 1))
F(n) = M F(n-1) = matrixpower(M, n) F(0)
You can raise a matrix to the power n by using repeated squaring, sometimes called binary exponentiation. Example code for integer:
r = 1; /* result */
s = m; /* s = squares of integer m */
while(n){ /* while exponent != 0 */
if(n&1) /* if bit of exponent set */
r *= s; /* multiply by s */
s *= s; /* s = s squared */
n >>= 1; /* test next exponent bit */
}
For an unsigned 64 bit integer, the max value for n is 40, so the maximum number of loops would be 6, since 2^6 > 40.
If this expression was calculating f(n) = 3 f(n-1) + 4 modulo some prime number (like 1,000,000,007) for very large n, then the matrix method would be useful, but in this case, with a max value of n = 40, recursion or iteration is good enough and simpler.