int main(void)
{
float me = 1.1;
double you = 1.1;
if ( me == you ) {
printf("I love U");
} else {
printf("I hate U");
}
}
This prints "I hate U". Why?
int main(void)
{
float me = 1.1;
double you = 1.1;
if ( me == you ) {
printf("I love U");
} else {
printf("I hate U");
}
}
This prints "I hate U". Why?
Floats use binary fraction. If you convert 1.1
to float, this will result in a binary representation.
Each bit right if the binary point halves the weight of the digit, as much as for decimal, it divides by ten. Bits left of the point double (times ten for decimal).
in decimal: ... 0*2 + 1*1 + 0*0.5 + 0*0.25 + 0*0.125 + 1*0.0625 + ...
binary: 0 1 . 0 0 0 1 ...
2's exp: 1 0 -1 -2 -3 -4
(exponent to the power of 2)
Problem is that 1.1
cannot be converted exactly to binary representation. For double, there are, however, more significant digits than for float.
If you compare the values, first, the float is converted to double. But as the computer does not know about the original decimal value, it simply fills the trailing digits of the new double with all 0
, while the double value is more precise. So both do compare not equal.
This is a common pitfall when using floats. For this and other reasons (e.g. rounding errors), you should not use exact comparison for equal/unequal), but a ranged compare using the smallest value different from 0:
#include "float.h"
...
// check for "almost equal"
if ( fabs(fval - dval) <= FLT_EPSILON )
...
Note the usage of FLT_EPSILON, which is the aforementioned value for single precision float
values. Also note the <=
, not <
, as the latter will actually require exact match).
If you compare two doubles, you might use DBL_EPSILON, but be careful with that.
Depending on intermediate calculations, the tolerance has to be increased (you cannot reduce it further than epsilon), as rounding errors, etc. will sum up. Floats in general are not forgiving with wrong assumptions about precision, conversion and rounding.
Edit:
As suggested by @chux, this might not work as expected for larger values, as you have to scale EPSILON according to the exponents. This conforms to what I stated: float comparision is not that simple as integer comparison. Think about before comparing.
In short, you should NOT use ==
to compare floating points.
for example
float i = 1.1;
// or double
float j = 1.1;
// or double
This argument
(i==j) == true
// is not always valid
for a correct comparison you should use epsilon (very small number):
(abs(i-j)<epsilon)== true
// this argument is valid
The question simplifies to why do me
and you
have different values?
Usually, C floating point is based on a binary representation. Many compilers & hardware follow IEEE 754 binary32 and binary64. Rare machines use a decimal, base-16 or other floating point representation.
OP's machine certainly does not represent 1.1 exactly as 1.1, but to the nearest representable floating point number.
Consider the below which prints out me
and you
to high precision. The previous representable floating point numbers are also shown. It is easy to see me != you
.
#include <math.h>
#include <stdio.h>
int main(void) {
float me = 1.1;
double you = 1.1;
printf("%.50f\n", nextafterf(me,0)); // previous float value
printf("%.50f\n", me);
printf("%.50f\n", nextafter(you,0)); // previous double value
printf("%.50f\n", you);
1.09999990463256835937500000000000000000000000000000
1.10000002384185791015625000000000000000000000000000
1.09999999999999986677323704498121514916420000000000
1.10000000000000008881784197001252323389053300000000
But it is more complicated: C allows code to use higher precision for intermediate calculations depending on FLT_EVAL_METHOD
. So on another machine, where FLT_EVAL_METHOD==1
(evaluate all FP to double
), the compare test may pass.
Comparing for exact equality is rarely used in floating point code, aside from comparison to 0.0. More often code uses an ordered compare a < b
. Comparing for approximate equality involves another parameter to control how near. @R.. has a good answer on that.
Because you are comparing two Floating point!
Floating point comparison is not exact because of Rounding Errors. Simple values like 1.1 or 9.0 cannot be precisely represented using binary floating point numbers, and the limited precision of floating point numbers means that slight changes in the order of operations can change the result. Different compilers and CPU architectures store temporary results at different precisions, so results will differ depending on the details of your environment. For example:
float a = 9.0 + 16.0
double b = 25.0
if(a == b) // can be false!
if(a >= b) // can also be false!
Even
if(abs(a-b) < 0.0001) // wrong - don't do this
This is a bad way to do it because a fixed epsilon (0.0001) is chosen because it “looks small”, could actually be way too large when the numbers being compared are very small as well.
I personally use the following method, may be this will help you:
#include <iostream> // std::cout
#include <cmath> // std::abs
#include <algorithm> // std::min
using namespace std;
#define MIN_NORMAL 1.17549435E-38f
#define MAX_VALUE 3.4028235E38f
bool nearlyEqual(float a, float b, float epsilon) {
float absA = std::abs(a);
float absB = std::abs(b);
float diff = std::abs(a - b);
if (a == b) {
return true;
} else if (a == 0 || b == 0 || diff < MIN_NORMAL) {
return diff < (epsilon * MIN_NORMAL);
} else {
return diff / std::min(absA + absB, MAX_VALUE) < epsilon;
}
}
This method passes tests for many important special cases, for different a
, b
and epsilon
.
And don't forget to read What Every Computer Scientist Should Know About Floating-Point Arithmetic!