I am trying to get fast computations of matrices with anaconda accelerate. I started with very basic example: multiply 2 matrices.
My goal is to somehow get GPU-multiplication which is better than usual numpy.dot
Here is my basic example, based on this documentation.
from numbapro import guvectorize
from numpy import arange
@guvectorize(['void(float32[:,:], float32[:,:], float32[:,:])'], '(m,n),(n,p)->(m,p)', target='gpu')
def matmul(A, B, C):
m, n = A.shape
n, p = B.shape
for i in range(m):
for j in range(p):
C[i, j] = 0
for k in range(n):
C[i, j] += A[i, k] * B[k, j]
import numpy as np
import time
for dim in [50, 100, 200]:
rnd = np.random.RandomState(0)
a = rnd.rand(dim, dim).astype(np.float32)
b = rnd.rand(dim, dim).astype(np.float32)
resgpu = np.zeros_like(a)
start = time.time()
rescpu = np.dot(a, b)
print('CPU:', time.time() - start)
start = time.time()
resgpu = matmul(a, b)
print('GPU:', time.time() - start)
print(np.allclose(rescpu, resgpu))
print(np.allclose(resgpu, rescpu))
Results are too bad: GPU is incredibly slower than CPU
CPU: 0.00011801719665527344
GPU: 0.05677294731140137
True
True
CPU: 0.00011205673217773438
GPU: 0.3881375789642334
True
True
CPU: 0.00038933753967285156
GPU: 3.018171787261963
True
True
Of course I understand that internal numpy realization is well optimized, but I expected anaconda official example to be good. I am using python 3.4.3 and got errors with using these two helping libs: http://www.cs.toronto.edu/~tijmen/gnumpy.html and https://github.com/rctn/gpupy
I should say that with gpupy I had successful speedup on python 2.7.
So my question is: how can I get matrix multiplication better than numpy-CPU by using GPU? What is wrong with anaconda official example and if there a working library for python3 that allows to use GPU in numpy way?
===
RESULTS
Unfortunately, there is no simple and good way for python 3, use 2.7 instead
Thanks to @rth for recommendint awesome library scikits.cuda
Some benchmark (tested with using anaconda mkl, so numpy is fast too)
dim = 10000
rnd = np.random.RandomState(0)
a = rnd.rand(dim, dim).astype(np.float32)
b = rnd.rand(dim, dim).astype(np.float32)
a_gpu = gpuarray.to_gpu(a)
b_gpu = gpuarray.to_gpu(b)
start = time.time()
rescpu = np.dot(a, b)
print 'CPU:', time.time() - start
start = time.time()
resgpu = culinalg.dot(a_gpu, b_gpu)
print 'GPU:', time.time() - start
resgpu = resgpu.get()
print np.allclose(rescpu, resgpu)
print np.allclose(resgpu, rescpu)
And results
CPU: 16.4765479565
GPU: 0.000520944595337