If it's something that can be run in the background and isn't forced to be synchronous, try wrapping the code (that calls the async method) in a Task.Run(). I'm not sure that'll solve a "deadlock" problem (if it's something out of sync, that's another issue), but if you want to benefit from async/await, if you don't have async all the way down, I'm not sure there's a benefit unless you run it in a background thread. I had a case where adding Task.Run() in a few places (in my case, from an MVC controller which I changed to be async) and calling async methods not only improved performance slightly, but it improved reliability (not sure that it was a "deadlock" but seemed like something similar) under heavier load.
You will find that using Task.Run() is regarded by some as a bad way to do it, but I really couldn't see a better way to do it in my situation, and it really did seem to be an improvement. Perhaps this is one of those things where there's the ideal way to do it vs. the way to make it work in the imperfect situation that you're in. :-)
[Updated due to requests for code]
So, as someone else posted, you should do "async all the way down". In my case, my data wasn't async, but my UI was. So, I went async down as far as I could, then I wrapped my data calls with Task.Run in such as way that it made sense. That's the trick, I think, to figure out if it makes sense that things can run in parallel, otherwise, you're just being synchronous (if you use async and immediately resolve it, forcing it to wait for the answer). I had a number of reads that I could perform in parallel.
In the above example, I think you have to async up as far as makes sense, and then at some point, determine where you can spin off a t hread and perform the operation independent of the other code. Let's say you have an operation that saves data, but you don't really need to wait for a response -- you're saving it and you're done. The only thing you might have to watch out for is not to close the program without waiting for that thread/task to finish. Where it makes sense in your code is up to you.
Syntax is pretty easy. I took existing code, changed the controller to an async returning a Task of my class that was formerly being returned.
var myTask = Task.Run(() =>
{
//...some code that can run independently.... In my case, loading data
});
// ...other code that can run at the same time as the above....
await Task.WhenAll(myTask, otherTask);
//..or...
await myTask;
//At this point, the result is available from the task
myDataValue = myTask.Result;
See MSDN for probably better examples:
https://msdn.microsoft.com/en-us/library/hh195051(v=vs.110).aspx
[Update 2, more relevant for the original question]
Let's say that your data read is an async method.
private async Task<MyClass> Read()
You can call it, save the task, and await on it when ready:
var runTask = Read();
//... do other code that can run in parallel
await runTask;
So, for this purpose, calling async code, which is what the original poster is requesting, I don't think you need Task.Run(), although I don't think you can use "await" unless you're an async method -- you'll need an alternate syntax for Wait.
The trick is that without having some code to run in parallel, there's little point in it, so thinking about multi-threading is still the point.