I'm trying to create a 360 video sphere (like the ones for cardboard) on Android. I have done this with a photo by rendering a sphere in OpenGL ES1.0 and than attaching a texture to it. Afterwards I can use the sensor values to rotate the sphere.
However, I can't figure out how to change the picture to a video. I've tried frame by frame rendering using texSubImage2D() but it's SUPER SLOW. My video is probably going to be about 4k density as I need a good quality even when only small portion of it is shown.
I've read some theoretical stuff about how this should be done (i.e. Frame Buffers, External Texture, Synchronization, etc.) but I couldn't find any example for these things, so some code would be EXTREMELY appreciated...
Here is how I render the Sphere, draw it and attach a texture to it (i.e. my Sphere class)...
import rapid.decoder.BitmapDecoder;
public class Sphere {
/** Buffer holding the vertices. */
private final List<FloatBuffer> mVertexBuffer = new ArrayList<FloatBuffer>();
/** The vertices for the sphere. */
private final List<float[]> mVertices = new ArrayList<float[]>();
/** Buffer holding the texture coordinates. */
private final List<FloatBuffer> mTextureBuffer = new ArrayList<FloatBuffer>();
/** Mapping texture coordinates for the vertices. */
private final List<float[]> mTexture = new ArrayList<float[]>();
/** The texture pointer. */
private final int[] mTextures = new int[1];
/** Total number of strips for the given depth. */
private final int mTotalNumStrips;
public Sphere(final int depth, final float radius) {
// Calculate basic values for the sphere.
this.mTotalNumStrips = Maths.power(2, depth - 1) * 5; //last 5 is related to properties of a icosahedron
final int numVerticesPerStrip = Maths.power(2, depth) * 3;
final double altitudeStepAngle = Maths.rad120 / Maths.power(2, depth);
final double azimuthStepAngle = Maths.rad360 / this.mTotalNumStrips;
double x, y, z, h, altitude, azimuth;
Log.e("mTotalNumStrips", ""+mTotalNumStrips);
Log.e("numVerticesPerStrip", ""+numVerticesPerStrip);
for (int stripNum = 0; stripNum < this.mTotalNumStrips; stripNum++) {
// Setup arrays to hold the points for this strip.
final float[] vertices = new float[numVerticesPerStrip * 3]; // x,y,z
final float[] texturePoints = new float[numVerticesPerStrip * 2]; // 2d texture
int vertexPos = 0;
int texturePos = 0;
// Calculate position of the first vertex in this strip.
altitude = Maths.rad90;
azimuth = stripNum * azimuthStepAngle;
// Draw the rest of this strip.
for (int vertexNum = 0; vertexNum < numVerticesPerStrip; vertexNum += 2) {
// First point - Vertex.
y = radius * Math.sin(altitude);
h = radius * Math.cos(altitude);
z = h * Math.sin(azimuth);
x = h * Math.cos(azimuth);
vertices[vertexPos++] = (float) x;
vertices[vertexPos++] = (float) y;
vertices[vertexPos++] = (float) z;
// First point - Texture.
texturePoints[texturePos++] = (float) (1 + azimuth / Maths.rad360);
texturePoints[texturePos++] = (float) (1 - (altitude + Maths.rad90) / Maths.rad180);
// Second point - Vertex.
altitude -= altitudeStepAngle;
azimuth -= azimuthStepAngle / 2.0;
y = radius * Math.sin(altitude);
h = radius * Math.cos(altitude);
z = h * Math.sin(azimuth);
x = h * Math.cos(azimuth);
vertices[vertexPos++] = (float) x;
vertices[vertexPos++] = (float) y;
vertices[vertexPos++] = (float) z;
// Second point - Texture.
texturePoints[texturePos++] = (float) (1 + azimuth / Maths.rad360);
texturePoints[texturePos++] = (float) (1 - (altitude + Maths.rad90) / Maths.rad180);
azimuth += azimuthStepAngle;
}
this.mVertices.add(vertices);
this.mTexture.add(texturePoints);
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(numVerticesPerStrip * 3 * Float.SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
FloatBuffer fb = byteBuffer.asFloatBuffer();
fb.put(this.mVertices.get(stripNum));
fb.position(0);
this.mVertexBuffer.add(fb);
// Setup texture.
byteBuffer = ByteBuffer.allocateDirect(numVerticesPerStrip * 2 * Float.SIZE);
byteBuffer.order(ByteOrder.nativeOrder());
fb = byteBuffer.asFloatBuffer();
fb.put(this.mTexture.get(stripNum));
fb.position(0);
this.mTextureBuffer.add(fb);
}
}
public void loadGLTexture(final GL10 gl, final Context context, final int texture) {
Bitmap bitmap = BitmapDecoder.from(context.getResources(), texture)
.scale(4048, 2024)
.decode();
// Generate one texture pointer, and bind it to the texture array.
gl.glGenTextures(1, this.mTextures, 0);
gl.glBindTexture(GL10.GL_TEXTURE_2D, this.mTextures[0]);
// Create nearest filtered texture.
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);
// Use Android GLUtils to specify a two-dimensional texture image from our bitmap.
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
// Tide up.
bitmap.recycle();
}
/**
* The draw method for the square with the GL context.
*
* @param gl Graphics handle.
*/
public void draw(final GL10 gl) {
// bind the previously generated texture.
gl.glBindTexture(GL10.GL_TEXTURE_2D, this.mTextures[0]);
// Point to our buffers.
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
// Set the face rotation, clockwise in this case.
gl.glFrontFace(GL10.GL_CW);
// Point to our vertex buffer.
for (int i = 0; i < this.mTotalNumStrips; i++) {
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, this.mVertexBuffer.get(i));
gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, this.mTextureBuffer.get(i));
// Draw the vertices as triangle strip.
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, this.mVertices.get(i).length / 3);
}
// Disable the client state before leaving.
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
}
}
And this is my renderer...
@Override
public void onDrawFrame(final GL10 gl) {
zvector = new float[] {0,0,1,0};
resultvector = new float[] {0,0,1,0};
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
gl.glLoadIdentity();
float radiansX = (float) Math.toRadians(gyro_angle[1]);
float radiansY = (float) Math.toRadians(-gyro_angle[0]);
float radiansZ = (float) Math.toRadians(-gyro_angle[2]);
// Finds the Sin and Cosin for the half angle.
float sinX =(float) Math.sin(radiansX * 0.5);
float cosX =(float) Math.cos(radiansX * 0.5);
float sinY =(float) Math.sin(radiansY * 0.5);
float cosY =(float) Math.cos(radiansY * 0.5);
float sinZ =(float) Math.sin(radiansZ * 0.5);
float cosZ =(float) Math.cos(radiansZ * 0.5);
// Formula to construct a new Quaternion based on direction and angle.
quatX[0] = cosX;
quatX[1] = 1 * sinX;
quatX[2] = 0 * sinX;
quatX[3] = 0 * sinX;
quatY[0] = cosY;
quatY[1] = 0 * sinY;
quatY[2] = 1 * sinY;
quatY[3] = 0 * sinY;
quatZ[0] = cosZ;
quatZ[1] = 0 * sinZ;
quatZ[2] = 0 * sinZ;
quatZ[3] = 1 * sinZ;
quat1 = multiplyQuat(quatX, quatY);
quat2 = multiplyQuat(quat1, quatZ);
mMatrix = getMatrixfromQuat(quat1);
gl.glLoadMatrixf(mMatrix, 0);
this.mSphere.draw(gl);
}
@Override
public void onSurfaceChanged(final GL10 gl, final int width, final int height) {
final float aspectRatio = (float) width / (float) (height == 0 ? 1 : height);
gl.glViewport(0, 0, width, height);
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
GLU.gluPerspective(gl, 45.0f, aspectRatio, 0.1f, 100.0f);
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
}
@Override
public void onSurfaceCreated(final GL10 gl, final EGLConfig config) {
this.mSphere.loadGLTexture(gl, this.mContext, R.drawable.pic360);
gl.glEnable(GL10.GL_TEXTURE_2D);
gl.glShadeModel(GL10.GL_SMOOTH);
gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
gl.glClearDepthf(1.0f);
gl.glEnable(GL10.GL_DEPTH_TEST);
gl.glDepthFunc(GL10.GL_LEQUAL);
gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
}
//CONSTRUCTER
public GlRenderer(final Context context) {
this.mContext = context;
this.mSphere = new Sphere(5, 2);
sensorManager = (SensorManager) this.mContext.getSystemService(this.mContext.SENSOR_SERVICE);
sensorGyroscope = sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
sensorAccelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
sensorMagneticField = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
valuesAccelerometer = new float[3];
valuesMagneticField = new float[3];
matrixR = new float[9];
matrixI = new float[9];
matrixValues = new float[3];
sensorManager.registerListener(this, sensorGyroscope, SensorManager.SENSOR_DELAY_FASTEST);
sensorManager.registerListener(this, sensorAccelerometer, SensorManager.SENSOR_DELAY_FASTEST);
sensorManager.registerListener(this, sensorMagneticField, SensorManager.SENSOR_DELAY_FASTEST);
}
//HERE GOES SOME CURRENTLY IRRELEVANT STUFF ABOUT THE SENSORS AND QUATERNIONS