FDIV is usually exceptionally slower than FMUL just b/c it can't be piped like multiplication and requires multiple clk cycles for iterative convergence HW seeking process.
Easiest way is to simply recognize that division is nothing more than the multiplication of the dividend y
and the inverse of the divisor x
. The not so straight forward part is remembering a float value x = m * 2 ^ e
& its inverse x^-1 = (1/m)*2^(-e) = (2/m)*2^(-e-1) = p * 2^q
approximating this new mantissa p = 2/m = 3-x, for 1<=m<2
. This gives a rough piece-wise linear approximation of the inverse function, however we can do a lot better by using an iterative Newton Root Finding Method to improve that approximation.
let w = f(x) = 1/x
, the inverse of this function f(x)
is found by solving for x
in terms of w
or x = f^(-1)(w) = 1/w
. To improve the output with the root finding method we must first create a function whose zero reflects the desired output, i.e. g(w) = 1/w - x, d/dw(g(w)) = -1/w^2
.
w[n+1]= w[n] - g(w[n])/g'(w[n]) = w[n] + w[n]^2 * (1/w[n] - x) = w[n] * (2 - x*w[n])
w[n+1] = w[n] * (2 - x*w[n]), when w[n]=1/x, w[n+1]=1/x*(2-x*1/x)=1/x
These components then add to get the final piece of code:
float inv_fast(float x) {
union { float f; int i; } v;
float w, sx;
int m;
sx = (x < 0) ? -1:1;
x = sx * x;
v.i = (int)(0x7EF127EA - *(uint32_t *)&x);
w = x * v.f;
// Efficient Iterative Approximation Improvement in horner polynomial form.
v.f = v.f * (2 - w); // Single iteration, Err = -3.36e-3 * 2^(-flr(log2(x)))
// v.f = v.f * ( 4 + w * (-6 + w * (4 - w))); // Second iteration, Err = -1.13e-5 * 2^(-flr(log2(x)))
// v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w))))))); // Third Iteration, Err = +-6.8e-8 * 2^(-flr(log2(x)))
return v.f * sx;
}