I am using R for analysis. My data is as follows:
id timestamp cumsum
1284381 21/01/2015 33
1284381 21/01/2015 57
1284381 2/3/2015 79
1284381 4/3/2015 203
1284381 25/03/2015 475
1284381 11/4/2015 578
1284381 17/04/2015 856
1284381 21/04/2015 1189
1284381 5/5/2015 1214
1284381 10/5/2015 1321
1284381 12/5/2015 1340
1284381 15/05/2015 1529
1284381 18/05/2015 1649
1284381 19/05/2015 1977
1284381 21/05/2015 2385
1284381 23/05/2015 2528
1284381 26/05/2015 2556
1284381 29/05/2015 2705
1284381 1/6/2015 2898
1284381 4/6/2015 2913
1284381 7/6/2015 2921
1284381 13/06/2015 2922
1284381 13/06/2015 3622
1284381 16/06/2015 3834
1284381 19/06/2015 3913
1284895 27/01/2015 6
1284895 27/01/2015 49
1284895 18/03/2015 57
1284895 20/03/2015 58
1284895 23/03/2015 59
1284895 23/03/2015 60
1284895 24/03/2015 62
1284895 29/03/2015 67
1284895 31/03/2015 75
1284895 1/4/2015 76
1284895 2/4/2015 77
1284895 8/4/2015 78
1284895 16/04/2015 80
1284895 21/04/2015 103
1284895 23/04/2015 275
1284895 26/04/2015 293
1284895 27/04/2015 386
1284895 30/04/2015 539
1284895 3/5/2015 807
1284895 8/5/2015 851
1284895 11/5/2015 988
1284895 14/05/2015 1056
1284895 18/05/2015 1157
1284895 21/05/2015 1226
1284895 23/05/2015 1383
1284895 26/05/2015 1501
1284895 30/05/2015 1518
1284895 2/6/2015 1694
1284895 4/6/2015 1695
1284895 8/6/2015 1858
1284895 11/6/2015 1909
1284895 14/06/2015 1917
1284895 17/06/2015 1957
1284895 20/06/2015 1973
The first column is ID, second is date and third is cumulative sum of the value. I want to build a forecasting model to this data, which can provide me a solution of, for a given id, at a future date(say. 08/08/2015), the cumsum would be ?? I have tried forecasting models with two variables. Since it is three variables and also the data is daily data and not continuous, I am facing difficulties in setting up the model.