Since you said your source is a large thesaurus with weighted data, I'm assuming if you pick any word, you will have the weight to its successor in the similarity graph. I will always use the sequence below, when I'm giving any example:
black-dark-obscure-hidden-concealed-snug-comfortable-easy-simple-pure-white
Let's think of the words as being a node on a graph, each relationship of similarity a word has with another is a path on that graph. Each path is weighted with a cost, which is the weight you have on the source file. So the best solution to find a path from one word to another is to use the A* (A star) path finding.
I'm using the minimum "cost" to travel from a word to its successor to be 1. You can adjust it accordingly. First you will need a good heuristic function to use, since this is a greedy algorithm. This heuristic function will return the "greedy" distance between two words, any words. You must respect the fact the the "distance" it returns can never be bigger than the real distance between the two words. Since I don't know any relationship between any words for a thesaurus, my heuristic function will always return the minimum cost 1. In other words, it will always say a word is the most similar word to any other. For example, my heuristic function tells me that 'black' is the best synonym for 'white'.
You must tune the heuristic function if you can, so it will respond with more accurate distances making the algorithm runs faster. That's the tricky part I guess.
You can see the pseudo-code for the algorithm on the Wikipedia article I sent. But here it is for a faster explanation:
function A*(start,goal)
closedset := the empty set -- The set of nodes already evaluated.
openset := {start} -- The set of tentative nodes to be evaluated, initially containing the start node
came_from := the empty map -- The map of navigated nodes.
g_score[start] := 0 -- Cost from start along best known path.
-- Estimated total cost from start to goal through y.
f_score[start] := g_score[start] + heuristic_cost_estimate(start, goal)
while openset is not empty
current := the node in openset having the lowest f_score[] value
if current = goal
return reconstruct_path(came_from, goal)
remove current from openset
add current to closedset
for each neighbor in neighbor_nodes(current)
if neighbor in closedset
continue
tentative_g_score := g_score[current] + dist_between(current,neighbor)
if neighbor not in openset or tentative_g_score < g_score[neighbor]
came_from[neighbor] := current
g_score[neighbor] := tentative_g_score
f_score[neighbor] := g_score[neighbor] + heuristic_cost_estimate(neighbor, goal)
if neighbor not in openset
add neighbor to openset
return failure
function reconstruct_path(came_from,current)
total_path := [current]
while current in came_from:
current := came_from[current]
total_path.append(current)
return total_path
Now, for the algorithm you'll have 2 arrays of nodes, the ones you are going to visit (opened) and the ones you already visited (closed). You will also have two arrays of distances for each node, that you will be completing as you travel through the graph.
One array (g_score) will tell you the real lowest traveled distance between the starting node and the specified node. For example, g_score["hidden"] will return the lowest weighted cost to travel from 'black' to 'hidden'.
The other array (f_score) will tell you the supposed distance between the node you specified to the goal you want to reach. For example, f_score["snug"] will return the supposed weighted cost to travel from "snug" to "white" using the heuristic function. Remember, this cost will always be less or equal the real cost to travel between words, since our heuristic function need to respect the aforementioned rule.
As the algorithm runs, you will be traveling from node to node, from the starting word, saving all the nodes you traveled and the costs you "used" to travel. You will be replacing the traveled path when you find a better cost to travel on the g_score array. You will use the f_score to predict which node will be best visited first, from the array of 'unvisited' nodes. It's best if you save your f_score as a minimum Heap.
You will end the algorithm when you find the node that is the goal that you want. Then you will reconstruct the minimum path using the array of nodes visited that you kept saving at each iteration. Another way the algorithm will stop is if it visited all neighbor nodes and didn't find the goal. When this happens, you can say there is no path from the starting node to the goal.
This algorithm is the most used on games to find the better path between two objects on a 3D world. To improve it, you just need to create a better heuristic function, that can let the algorithm find the better nodes to travel first, leding it to the goal faster.
-- 7f