Split off from: https://stackoverflow.com/questions/31076846/is-it-possible-to-use-javascript-to-draw-an-svg-that-is-precise-to-1-000-000-000
The SVG spec states that SVGs use double-precision floats for all values.
Through testing, it's easy to verify this.
Affinity designer is a vector graphics program that allows zooms up to 1,000,000,000%, and it too uses double-precision floats to do all calculations.
I would like to know from someone who deeply understands double-precision floats: is it possible create an SVG that is visually correct at 1,000,000,000% zoom?
Honestly, I'm struggling with getting a grasp on the math of this:
9007199254740992 (The max value of a double-float according to https://stackoverflow.com/a/1848953/2328064 ) is larger than 1,000,000,000 so it seems to be reasonable that if something is 2 or even 2000 wide, that it would still be small when starting at 9007199254740992 and zooming 1,000,000,000%.
Hypothetical examples as ways to approach the question:
- If we created an SVG of a 2D slice of the entire visible universe how far could we zoom in before floating point rounding started shifting things by 1 pixel?
- If we start with an SVG that is 1024x1024, can we create a 'microscopic' grid that is both visible and visually correct at 1,000,000,000% zoom? (Like, say, we can see 20+ equidistant squares)
Edit:
Based on everything so far, the definitive answer is yes (with some important and interesting caveats for actually viewing this SVG).
- In order to get the most precision at high zoom, start at the centre.
- The SVG spec is not designed for this level of precision. This is especially true of the spec for SVG viewers.
- (Not mentioned below) Typically curves are represented in software as Bézier curves, and standard Bézier curve implementations do not draw mathematically perfect circles.