I'm using spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithSGD} and spark.mllib.tree.RandomForest for classification. Using these packages I produce classification models. Only these models predict a specific class per instance. In Weka, we can get the exact probability for each instance to be of each class. How can we do it using these packages?
In LogisticRegressionModel we can set the threshold. So I've created a function that check the results for each point on a different threshold. But this cannot be done for RandomForest (see How to set cutoff while training the data in Random Forest in Spark)