I have two numpy arrays
import numpy as np
x = np.linspace(1e10, 1e12, num=50) # 50 values
y = np.linspace(1e5, 1e7, num=50) # 50 values
x.shape # output is (50,)
y.shape # output is (50,)
I would like to create a function which returns an array shaped (50,50)
such that the first x value x0
is evaluated for all y values, etc.
The current function I am using is fairly complicated, so let's use an easier example. Let's say the function is
def func(x,y):
return x**2 + y**2
How do I shape this to be a (50,50)
array? At the moment, it will output 50 values. Would you use a for loop inside an array?
Something like:
np.array([[func(x,y) for i in x] for j in y)
but without using two for loops. This takes forever to run.
EDIT: It has been requested I share my "complicated" function. Here it goes:
There is a data vector which is a 1D numpy array of 4000 measurements. There is also a "normalized_matrix", which is shaped (4000,4000)---it is nothing special, just a matrix with entry values of integers between 0 and 1, e.g. 0.5567878. These are the two "given" inputs.
My function returns the matrix multiplication product of transpose(datavector) * matrix * datavector, which is a single value.
Now, as you can see in the code, I have initialized two arrays, x and y, which pass through a series of "x parameters" and "y parameters". That is, what does func(x,y)
return for value x1
and value y1
, i.e. func(x1,y1)
?
The shape of matrix1
is (50, 4000, 4000). The shape of matrix2
is (50, 4000, 4000). Ditto for total_matrix
.
normalized_matrix
is shape (4000,4000) and id_mat
is shaped (4000,4000).
normalized_matrix
print normalized_matrix.shape #output (4000,4000)
data_vector = datarr
print datarr.shape #output (4000,)
def func(x, y):
matrix1 = x [:, None, None] * normalized_matrix[None, :, :]
matrix2 = y[:, None, None] * id_mat[None, :, :]
total_matrix = matrix1 + matrix2
# transpose(datavector) * matrix * datavector
# by matrix multiplication, equals single value
return np.array([ np.dot(datarr.T, np.dot(total_matrix, datarr) ) ])
If I try to use np.meshgrid()
, that is, if I try
x = np.linspace(1e10, 1e12, num=50) # 50 values
y = np.linspace(1e5, 1e7, num=50) # 50 values
X, Y = np.meshgrid(x,y)
z = func(X, Y)
I get the following value error: ValueError: operands could not be broadcast together with shapes (50,1,1,50) (1,4000,4000)
.