I extracted tweets from twitter using the twitteR package and saved them into a text file.
I have carried out the following on the corpus
xx<-tm_map(xx,removeNumbers, lazy=TRUE, 'mc.cores=1')
xx<-tm_map(xx,stripWhitespace, lazy=TRUE, 'mc.cores=1')
xx<-tm_map(xx,removePunctuation, lazy=TRUE, 'mc.cores=1')
xx<-tm_map(xx,strip_retweets, lazy=TRUE, 'mc.cores=1')
xx<-tm_map(xx,removeWords,stopwords(english), lazy=TRUE, 'mc.cores=1')
(using mc.cores=1 and lazy=True as otherwise R on mac is running into errors)
tdm<-TermDocumentMatrix(xx)
But this term document matrix has a lot of strange symbols, meaningless words and the like. If a tweet is
RT @Foxtel: One man stands between us and annihilation: @IanZiering.
Sharknado‚Äã 3: OH HELL NO! - July 23 on Foxtel @SyfyAU
After cleaning the tweet I want only proper complete english words to be left , i.e a sentence/phrase void of everything else (user names, shortened words, urls)
example:
One man stands between us and annihilation oh hell no on
(Note: The transformation commands in the tm package are only able to remove stop words, punctuation whitespaces and also conversion to lowercase)