I just tried using the IncrementalPCA from sklearn.decomposition, but it threw a MemoryError just like the PCA and RandomizedPCA before. My problem is, that the matrix I am trying to load is too big to fit into RAM. Right now it is stored in an hdf5 database as dataset of shape ~(1000000, 1000), so I have 1.000.000.000 float32 values. I thought IncrementalPCA loads the data in batches, but apparently it tries to load the entire dataset, which does not help. How is this library meant to be used? Is the hdf5 format the problem?
from sklearn.decomposition import IncrementalPCA
import h5py
db = h5py.File("db.h5","r")
data = db["data"]
IncrementalPCA(n_components=10, batch_size=1).fit(data)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/software/anaconda/2.3.0/lib/python2.7/site-packages/sklearn/decomposition/incremental_pca.py", line 165, in fit
X = check_array(X, dtype=np.float)
File "/software/anaconda/2.3.0/lib/python2.7/site-packages/sklearn/utils/validation.py", line 337, in check_array
array = np.atleast_2d(array)
File "/software/anaconda/2.3.0/lib/python2.7/site-packages/numpy/core/shape_base.py", line 99, in atleast_2d
ary = asanyarray(ary)
File "/software/anaconda/2.3.0/lib/python2.7/site-packages/numpy/core/numeric.py", line 514, in asanyarray
return array(a, dtype, copy=False, order=order, subok=True)
File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper (-------src-dir-------/h5py/_objects.c:2458)
File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper (-------src-dir-------/h5py/_objects.c:2415)
File "/software/anaconda/2.3.0/lib/python2.7/site-packages/h5py/_hl/dataset.py", line 640, in __array__
arr = numpy.empty(self.shape, dtype=self.dtype if dtype is None else dtype)
MemoryError
Thanks for help