How do we concatenate two columns in an Apache Spark DataFrame? Is there any function in Spark SQL which we can use?
18 Answers
With raw SQL you can use CONCAT
:
In Python
df = sqlContext.createDataFrame([("foo", 1), ("bar", 2)], ("k", "v")) df.registerTempTable("df") sqlContext.sql("SELECT CONCAT(k, ' ', v) FROM df")
In Scala
import sqlContext.implicits._ val df = sc.parallelize(Seq(("foo", 1), ("bar", 2))).toDF("k", "v") df.registerTempTable("df") sqlContext.sql("SELECT CONCAT(k, ' ', v) FROM df")
Since Spark 1.5.0 you can use concat
function with DataFrame API:
In Python :
from pyspark.sql.functions import concat, col, lit df.select(concat(col("k"), lit(" "), col("v")))
In Scala :
import org.apache.spark.sql.functions.{concat, lit} df.select(concat($"k", lit(" "), $"v"))
There is also concat_ws
function which takes a string separator as the first argument.

- 322,348
- 103
- 959
- 935
-
Use `concat_ws()` to treat **null values** (c.f. below answers). – Benji Apr 13 '23 at 15:53
Here's how you can do custom naming
import pyspark
from pyspark.sql import functions as sf
sc = pyspark.SparkContext()
sqlc = pyspark.SQLContext(sc)
df = sqlc.createDataFrame([('row11','row12'), ('row21','row22')], ['colname1', 'colname2'])
df.show()
gives,
+--------+--------+
|colname1|colname2|
+--------+--------+
| row11| row12|
| row21| row22|
+--------+--------+
create new column by concatenating:
df = df.withColumn('joined_column',
sf.concat(sf.col('colname1'),sf.lit('_'), sf.col('colname2')))
df.show()
+--------+--------+-------------+
|colname1|colname2|joined_column|
+--------+--------+-------------+
| row11| row12| row11_row12|
| row21| row22| row21_row22|
+--------+--------+-------------+

- 57,590
- 26
- 140
- 166

- 12,821
- 11
- 69
- 88
One option to concatenate string columns in Spark Scala is using concat
.
It is necessary to check for null values. Because if one of the columns is null, the result will be null even if one of the other columns do have information.
Using concat
and withColumn
:
val newDf =
df.withColumn(
"NEW_COLUMN",
concat(
when(col("COL1").isNotNull, col("COL1")).otherwise(lit("null")),
when(col("COL2").isNotNull, col("COL2")).otherwise(lit("null"))))
Using concat
and select
:
val newDf = df.selectExpr("concat(nvl(COL1, ''), nvl(COL2, '')) as NEW_COLUMN")
With both approaches you will have a NEW_COLUMN which value is a concatenation of the columns: COL1 and COL2 from your original df.

- 7,307
- 8
- 57
- 94
-
1I tried your method in pyspark but it did not work, warning "col should be Column". – Samson Nov 18 '19 at 15:41
-
-
5@IgnacioAlorre If you are using `concat_ws` instead of `concat`, you can avoid checking for NULL. – Aswath K Mar 03 '20 at 16:02
concat(*cols)
v1.5 and higher
Concatenates multiple input columns together into a single column. The function works with strings, binary and compatible array columns.
Eg: new_df = df.select(concat(df.a, df.b, df.c))
concat_ws(sep, *cols)
v1.5 and higher
Similar to concat
but uses the specified separator.
Eg: new_df = df.select(concat_ws('-', df.col1, df.col2))
map_concat(*cols)
v2.4 and higher
Used to concat maps, returns the union of all the given maps.
Eg: new_df = df.select(map_concat("map1", "map2"))
Using concat operator (||
):
v2.3 and higher
Eg: df = spark.sql("select col_a || col_b || col_c as abc from table_x")
Reference: Spark sql doc

- 23,310
- 7
- 53
- 72

- 27,209
- 16
- 105
- 126
If you want to do it using DF, you could use a udf to add a new column based on existing columns.
val sqlContext = new SQLContext(sc)
case class MyDf(col1: String, col2: String)
//here is our dataframe
val df = sqlContext.createDataFrame(sc.parallelize(
Array(MyDf("A", "B"), MyDf("C", "D"), MyDf("E", "F"))
))
//Define a udf to concatenate two passed in string values
val getConcatenated = udf( (first: String, second: String) => { first + " " + second } )
//use withColumn method to add a new column called newColName
df.withColumn("newColName", getConcatenated($"col1", $"col2")).select("newColName", "col1", "col2").show()

- 487
- 5
- 16
From Spark 2.3(SPARK-22771) Spark SQL supports the concatenation operator ||
.
For example;
val df = spark.sql("select _c1 || _c2 as concat_column from <table_name>")

- 34,112
- 13
- 125
- 125

- 1,544
- 4
- 23
- 28
Here is another way of doing this for pyspark:
#import concat and lit functions from pyspark.sql.functions
from pyspark.sql.functions import concat, lit
#Create your data frame
countryDF = sqlContext.createDataFrame([('Ethiopia',), ('Kenya',), ('Uganda',), ('Rwanda',)], ['East Africa'])
#Use select, concat, and lit functions to do the concatenation
personDF = countryDF.select(concat(countryDF['East Africa'], lit('n')).alias('East African'))
#Show the new data frame
personDF.show()
----------RESULT-------------------------
84
+------------+
|East African|
+------------+
| Ethiopian|
| Kenyan|
| Ugandan|
| Rwandan|
+------------+

- 57,590
- 26
- 140
- 166

- 1,525
- 14
- 12
Do we have java syntax corresponding to below process
val dfResults = dfSource.select(concat_ws(",",dfSource.columns.map(c => col(c)): _*))

- 6,914
- 10
- 48
- 73

- 31
- 3
In Spark 2.3.0, you may do:
spark.sql( """ select '1' || column_a from table_a """)

- 2,234
- 19
- 19
In Java you can do this to concatenate multiple columns. The sample code is to provide you a scenario and how to use it for better understanding.
SparkSession spark = JavaSparkSessionSingleton.getInstance(rdd.context().getConf());
Dataset<Row> reducedInventory = spark.sql("select * from table_name")
.withColumn("concatenatedCol",
concat(col("col1"), lit("_"), col("col2"), lit("_"), col("col3")));
class JavaSparkSessionSingleton {
private static transient SparkSession instance = null;
public static SparkSession getInstance(SparkConf sparkConf) {
if (instance == null) {
instance = SparkSession.builder().config(sparkConf)
.getOrCreate();
}
return instance;
}
}
The above code concatenated col1,col2,col3 seperated by "_" to create a column with name "concatenatedCol".

- 6,856
- 6
- 43
- 93
In my case, I wanted a Pipe-'I' delimited row.
from pyspark.sql import functions as F
df.select(F.concat_ws('|','_c1','_c2','_c3','_c4')).show()
This worked well like a hot knife over butter.

- 2,135
- 26
- 27
use concat method like this:
Dataset<Row> DF2 = DF1
.withColumn("NEW_COLUMN",concat(col("ADDR1"),col("ADDR2"),col("ADDR3"))).as("NEW_COLUMN")

- 33
- 5
Another way to do it in pySpark using sqlContext...
#Suppose we have a dataframe:
df = sqlContext.createDataFrame([('row1_1','row1_2')], ['colname1', 'colname2'])
# Now we can concatenate columns and assign the new column a name
df = df.select(concat(df.colname1, df.colname2).alias('joined_colname'))

- 34,112
- 13
- 125
- 125

- 39
- 4
Indeed, there are some beautiful inbuilt abstractions for you to accomplish your concatenation without the need to implement a custom function. Since you mentioned Spark SQL, so I am guessing you are trying to pass it as a declarative command through spark.sql(). If so, you can accomplish in a straight forward manner passing SQL command like:
SELECT CONCAT(col1, '<delimiter>', col2, ...) AS concat_column_name FROM <table_name>;
Also, from Spark 2.3.0, you can use commands in lines with:
SELECT col1 || col2 AS concat_column_name FROM <table_name>;
Wherein, is your preferred delimiter (can be empty space as well) and is the temporary or permanent table you are trying to read from.
We can simple use SelectExpr
as well.
df1.selectExpr("*","upper(_2||_3) as new")

- 12,503
- 11
- 43
- 61
Spark SQL provides two built-in functions: concat and concat_ws. we use concat to merge multiple strings into single string. concat_ws to merge multiple strings into single string with a delimiter/seperator.
val newDf =
df.withColumn(
"NEW_COLUMN",
concat(
when(col("COL1").isNotNull, col("COL1")).otherwise(lit("null")),
when(col("COL2").isNotNull, col("COL2")).otherwise(lit("null"))))
Note: For this code to work you need to put the parentheses "()" in the "isNotNull" function. -> The correct one is "isNotNull()".
val newDf =
df.withColumn(
"NEW_COLUMN",
concat(
when(col("COL1").isNotNull(), col("COL1")).otherwise(lit("null")),
when(col("COL2").isNotNull(), col("COL2")).otherwise(lit("null"))))

- 4,555
- 31
- 31
- 45