Here's another approach reusing the code from your previous question:
%// create adjacency matrix
%// Includes code from @LuisMendo's answer
% // Data:
A = [ 1 1 1 1 1 1
1 2 2 3 3 3
4 4 2 2 3 4
4 4 4 4 4 4
4 4 5 5 6 6
5 5 5 5 5 6 ];
adj = [0 1 0; 1 0 1; 0 1 0]; %// define adjacency. [1 1 1;1 0 1;1 1 1] to include diagonals
nodes=unique(A);
J=zeros(numel(nodes));
for value=nodes.'
mask = conv2(double(A==value), adj, 'same')>0; %// from Luis' code
result = unique(A(mask)); %// from Luis' code
J(value,result)=1;
J(value,value)=0;
end
J is now the adjacency matrix for your matrix A and this becomes a graph problem. From here you would use the appropriate algorithm to find the shortest path. Path length of 1 is your "1st adjacency", path length of 2 is "2nd adjacency" and so on.
- Dijkstra to find shortest path from a single node
- Floyd-Warshall to find shortest paths from all the nodes
- Breadth-first search for a single node, plus you can generate a handy tree
Update
I decided to play around with a custom Breadth-First Traversal to use in this case, and it's a good thing I did. It exposed some glaring errors in my pseudocode, which has been corrected above with working Matlab code.
Using your sample data, the code above generates the following adjacency matrix:
J =
0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
We can then perform a depth-first traversal of the graph, putting each level of the breadth-first tree in a row of a cell array so that D{1}
lists the nodes that have a distance of 1, D{2}
has a distance of 2, etc.
function D = BFD(A, s)
%// BFD - Breadth-First Depth
%// Find the depth of all nodes connected to node s
%// in graph A (represented by an adjacency matrix)
A=logical(A); %// all distances are 1
r=A(s,:); %// newly visited nodes at the current depth
v=r; %// previously visited nodes
v(s)=1; %// we've visited the start node
D={}; %// returned Depth list
while any(r)
D(end+1,:)=find(r);
r=any(A(r,:))&~v;
v=r|v;
end
end
For a start node of 2
, the output is:
>> D=BFD(J,2)
D =
{
[1,1] =
1 3 4
[2,1] =
5 6
}