I want to update the columns in an old data.table
based on a new data.table
only when the value is not NA.
DT_old = data.table(x=rep(c("a","b","c")), y=c(1,3,6), v=1:3, l=c(1,1,1))
DT_old
x y v l
1: a 1 1 1
2: b 3 2 1
3: c 6 3 1
DT_new = data.table(x=rep(c("b","c",'d')), y=c(9,6,10), v=c(2,NA,10), z=c(9,9,9))
DT_new
x y v z
1: b 9 2 9
2: c 6 NA 9
3: d 10 10 9
I want the output to be
x y v z
1: b 9 2 9
2: c 6 3 9
3: d 10 10 9
4: a 1 1 NA
Currently I am merging the two data.table
and going through each column and replacing the NA in the new data.table
DT_merged <- merge(DT_new, DT_old, all=TRUE, by='x')
DT_merged
x y.x v.x z y.y v.y l
1: a NA NA NA 1 1 1
2: b 9 2 9 3 2 1
3: c 6 NA 9 6 3 1
4: d 10 10 9 NA NA NA
DT_merged[is.na(y.x), y.x := y.y]
DT_merged[is.na(v.x), v.x := v.y]
DT_merged = DT_merged[, list(y=y.x, v=v.x, z=z)
Is there a better way to do the above?