The obvious answer works along these lines:
class integer {
bool negative;
std::vector<std::uint64_t> data;
};
Where the number is represented as a sign bit and a (unsigned) base 2**64 value.
This means the absolute value of your number is:
data[0] + (data[1] << 64) + (data[2] << 128) + ....
Or, in other terms you represent your number as a little-endian bitstring with words as large as your target machine can reasonably work with. I chose 64 bit integers, as you can minimize the number of individual word operations this way (on a x64 machine).
To implement Addition, you use a concept you have learned in elementary school:
a b
+ x y
------------------
(a+x+carry) (b+y reduced to one digit length)
The reduction (modulo 2**64) happens automatically, and the carry can only ever be either zero or one. All that remains is to detect a carry, which is simple:
bool next_carry = false;
if(x += y < y) next_carry = true;
if(prev_carry && !++x) next_carry = true;
Subtraction can be implemented similarly using a borrow instead.
Note that getting anywhere close to the performance of e.g. libgmp is... unlikely.