First of all, a short side note:
And yes, I'm aware of the quote about prematurely optimizing.
What you are asking about here is not "premature optimization"!
You are not talking about replacing a multiplication with some odd bitwise operations "because they are faster (on a 90's PC, in a C-program)". You are thinking about the right data structure for your application pattern. You are considering the application cases (though you did not tell us many details about them). And you are considering the implications that the choice of a certain data structure will have on the asymptotic running time of your algorithms. This is planning, or maybe engineering, but not "premature optimization".
That being said, and to tell you what you already know: It depends.
To elaborate this a bit: It depends on the actual operations (methods) that you perform on these collections, how frequently you perform then, how time-critical they are, and how memory-sensitive the application is.
(For 5000 elements, the latter should not be a problem, as only references are stored - see the discussion in the comments)
In general, I'd also be hesitant to really store the Set
alongside the List
, if they are always supposed to contain the same elements. This wording is intentional: You should always be aware of the differences between both collections. Primarily: A Set
can contain each element only once, whereas a List
may contain the same element multiple times.
For all hints, recommendations and considerations, this should be kept in mind.
But even if it is given for granted that the lists will always contain elements only once in your case, then you still have to make sure that both collections are maintained properly. If you really just stored them, you could easily cause subtle bugs:
private Set<T> set = new HashSet<T>();
private List<T> list = new ArrayList<T>();
// Fine
void add(T element)
{
set.add(element);
list.add(element);
}
// Fine
void remove(T element)
{
set.remove(element);
list.remove(element); // May be expensive, but ... well
}
// Added later, 100 lines below the other methods:
void removeAll(Collection<T> elements)
{
set.removeAll(elements);
// Ooops - something's missing here...
}
To avoid this, one could even consider to create a dedicated collection class - something like a FastContainsList
that combines a Set
and a List
, and forwards the contains
call to the Set
. But you'll qickly notice that it will be hard (or maybe impossible) to not violate the contracts of the Collection
and List
interfaces with such a collection, unless the clause that "You may not add elements twice" becomes part of the contract...
So again, all this depends on what you want to do with these methods, and which interface you really need. If you don't need the indexed access of List
, then it's easy. Otherwise, referring to your example:
At one point I compare it against another ArrayList, to find their intersection. I know this is O(n^2).
You can avoid this by creating the sets locally:
static <T> List<T> computeIntersection(List<T> list0, List<T> list1)
{
Set<T> set0 = new LinkedHashSet<T>(list0);
Set<T> set1 = new LinkedHashSet<T>(list1);
set0.retainAll(set1);
return new ArrayList<T>(set0);
}
This will have a running time of O(n). Of course, if you do this frequently, but rarely change the contents of the lists, there may be options to avoid the copies, but for the reason mentioned above, maintainng the required data structures may become tricky.