This problem has a simple geometric interpretation, which shows that it can be solved in O(n^2) time and probably can't be solved any faster than that (reduction from 3SUM). Suppose our array is [1, 2, 10, 3, 5]
. We can write that array as a sequence of points
(0,1), (1,2), (2,10), (3,3), (4,5)
in which the x-value is the index of the array item and the y-value is the value of the array item. The question now becomes one of finding a line which passes the maximum possible number of points in that set. The cost of converting the array is the number of points not on a line, which is minimized when the number of points on a line is maximized.
A fairly definitive answer to that question is given in this SO posting: What is the most efficient algorithm to find a straight line that goes through most points?
The idea: for each point P in the set from left to right, find the line passing through that point and a maximum number of points to the right of P. (We don't need to look at points to the left of P because they would have been caught in an earlier iteration).
To find the maximum number of P-collinear points to the right of P, for each such point Q calculate the slope of the line segment PQ. Tally up the different slopes in a hash map. The slope which maps to the maximum number of hits is what you're looking for.
Technical issue: you probably don't want to use floating point arithmetic to calculate the slopes. On the other hand, if you use rational numbers, you potentially have to calculate the greatest common divisor in order to compare fractions by comparing numerator and denominator, which multiplies running time by a factor of log n. Instead, you should check equality of rational numbers a/b
and c/d
by testing whether ad == bc
.
The SO posting referenced above gives a reduction from 3SUM, i.e., this problem is 3SUM-hard which shows that if this problem could be solved substantially faster than O(n^2), then 3SUM could also be solved substantially faster than O(n^2). This is where the condition that the integers are in (-inf,inf) comes in. If it is known that the integers are from a bounded set, the reduction from 3SUM is not definitive.
An interesting further question is whether the idea in the Wikipedia for solving 3SUM in O(n + N log N) time when the integers are in the bounded set (-N,N) can be used to solve the minimum cost to convert an array to an AP problem in time faster than O(n^2).