5

I am currently working on CUDA and trying to solve Ax = b using cuBLAS and cuSPARSE library. I looked through the sample codes including conjugateGradient & conjugateGradientPrecond provided by NVIDIA. However, the conjugate gradient method only works for positive definite matrix and it is an iterative method. Now, I have some general sparse matrices and I think I should take advantage of cuSPARSE library. Does anyone know how can I solve Ax = b using cuSPARSE and cuBLAS libraries? I could not find useful APIs for me. Generally, the matrices are expected to be at least 1000x1000 and in some cases it would go up to 100000x100000. Should I do this using a direct method?

Vitality
  • 20,705
  • 4
  • 108
  • 146
Shenghan Gao
  • 71
  • 1
  • 8
  • How would you solve it in general? What method would you use if you were solving it on the host? – Robert Crovella Aug 05 '15 at 19:12
  • I am thinking to use Cholesky or LU factorization (not the incomplete one in cuSparse library) and then get something like LUx = Pb so that I can solve for x. – Shenghan Gao Aug 05 '15 at 19:25
  • 2
    If you want to use Cholesky, Tim Davis' CHOLMOD implementation in [suitesparse](http://faculty.cse.tamu.edu/davis/suitesparse.html) is now GPU-enabled. The choice of whether to use a direct method or not will possibly depend on the matrix size, which you haven't stated. – Robert Crovella Aug 05 '15 at 19:27
  • Thanks for reminding! I have edited the question. – Shenghan Gao Aug 05 '15 at 19:48
  • 3
    1000x1000 is *tiny* for a sparse system. You may want to investigate direct methods on the host, or even just use dense matrix algebra. A 1000x1000 dense matrix of `double` only occupies 8MB. "larger than 1000x1000" really gives no information at all. It has no upper bound. Give a bounded range for the matrix sizes you care about. – Robert Crovella Aug 05 '15 at 20:33
  • Thanks! The fact is that in some real cases the size of matrices would go up to 100000x100000 and I think it will not go over this number. But in most of cases, the size of the matrices should be around 50000x50000. 1000x1000 is a small case for testing purpose. – Shenghan Gao Aug 05 '15 at 22:15

1 Answers1

8

One possibility to solve general sparse linear systems in CUDA is using cuSOLVER.

cuSOLVER has three useful routines:

  1. cusolverSpDcsrlsvlu, which works for square linear systems (number of unknowns equal to the number of equations) and internally uses sparse LU factorization with partial pivoting;
  2. cusolverSpDcsrlsvqr, which works for square linear systems (number of unknowns equal to the number of equations) and internally uses sparse QR factorization;
  3. cusolverSpDcsrlsqvqr, which works for rectangular linear systems (number of unknowns different to the number of equations) and internally solves a least square problem.

For ALL the above routines, the supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric/Hermitian and only lower/upper part is used or meaningful, then its missing upper/lower part must be extended.

NOTES ON cusolverSpDcsrlsvlu

Attention should be paid to two input parameters: tol and reorder. Concerning the former, if the system matrix A is singular, then some diagonal elements of the matrix U of the LU decomposition are zero. The algorithm decides for zero if |U(j,j)|<tol. Concerning the latter, cuSOLVER provides a reordering to reduce zero fill-in which dramactically affects the performance of LU factorization. reorder toggles between reordering (reorder=1) or not reordering (reorder=0).

Attention should be paid also to an output parameter: singularity. It is -1 if A is invertible, otherwise it provides the first index j such that U(j,j)=0.

NOTES ON cusolverSpDcsrlsvqr

Attention should be paid to the same input/output parameters are before. In particular, tol is used to decide for singularity, reorder has no effect and singularity is -1 if A is invertible, otherwise it returns the first index j such that R(j,j)=0.

NOTES ON cusolverSpDcsrlsqvqr

Attention should be paid to the input parameter tol, which is used to decide the rank of A.

Attention should be also paid to the output parameters rankA, which represents the numerical rank of A, p, a permutation vector of length equal to the number of columns of A (please, see the documentation for further details) and min_norm, which is the norm of the residual ||Ax - b||.

Currently, as of CUDA 10.0, the above three functions are for the host channel only, which means that they do not yet run on GPU. They must be called as:

  1. cusolverSpDcsrlsvluHost;
  2. cusolverSpDcsrlsvqrHost;
  3. cusolverSpDcsrlsqvqrHost,

and the input argument should all reside on the host.

Below, please find a fully worked example using all the above three possibilities:

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include <cusparse.h>
#include <cusolverSp.h>

/*******************/
/* iDivUp FUNCTION */
/*******************/
//extern "C" int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }
__host__ __device__ int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }

/********************/
/* CUDA ERROR CHECK */
/********************/
// --- Credit to http://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
    if (code != cudaSuccess)
    {
        fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
        if (abort) { exit(code); }
    }
}

extern "C" void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); }

/**************************/
/* CUSOLVE ERROR CHECKING */
/**************************/
static const char *_cusolverGetErrorEnum(cusolverStatus_t error)
{
    switch (error)
    {
    case CUSOLVER_STATUS_SUCCESS:
        return "CUSOLVER_SUCCESS";

    case CUSOLVER_STATUS_NOT_INITIALIZED:
        return "CUSOLVER_STATUS_NOT_INITIALIZED";

    case CUSOLVER_STATUS_ALLOC_FAILED:
        return "CUSOLVER_STATUS_ALLOC_FAILED";

    case CUSOLVER_STATUS_INVALID_VALUE:
        return "CUSOLVER_STATUS_INVALID_VALUE";

    case CUSOLVER_STATUS_ARCH_MISMATCH:
        return "CUSOLVER_STATUS_ARCH_MISMATCH";

    case CUSOLVER_STATUS_EXECUTION_FAILED:
        return "CUSOLVER_STATUS_EXECUTION_FAILED";

    case CUSOLVER_STATUS_INTERNAL_ERROR:
        return "CUSOLVER_STATUS_INTERNAL_ERROR";

    case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
        return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED";

    }

    return "<unknown>";
}

inline void __cusolveSafeCall(cusolverStatus_t err, const char *file, const int line)
{
    if (CUSOLVER_STATUS_SUCCESS != err) {
        fprintf(stderr, "CUSOLVE error in file '%s', line %d, error: %s \nterminating!\n", __FILE__, __LINE__, \
            _cusolverGetErrorEnum(err)); \
            assert(0); \
    }
}

extern "C" void cusolveSafeCall(cusolverStatus_t err) { __cusolveSafeCall(err, __FILE__, __LINE__); }

/***************************/
/* CUSPARSE ERROR CHECKING */
/***************************/
static const char *_cusparseGetErrorEnum(cusparseStatus_t error)
{
    switch (error)
    {

    case CUSPARSE_STATUS_SUCCESS:
        return "CUSPARSE_STATUS_SUCCESS";

    case CUSPARSE_STATUS_NOT_INITIALIZED:
        return "CUSPARSE_STATUS_NOT_INITIALIZED";

    case CUSPARSE_STATUS_ALLOC_FAILED:
        return "CUSPARSE_STATUS_ALLOC_FAILED";

    case CUSPARSE_STATUS_INVALID_VALUE:
        return "CUSPARSE_STATUS_INVALID_VALUE";

    case CUSPARSE_STATUS_ARCH_MISMATCH:
        return "CUSPARSE_STATUS_ARCH_MISMATCH";

    case CUSPARSE_STATUS_MAPPING_ERROR:
        return "CUSPARSE_STATUS_MAPPING_ERROR";

    case CUSPARSE_STATUS_EXECUTION_FAILED:
        return "CUSPARSE_STATUS_EXECUTION_FAILED";

    case CUSPARSE_STATUS_INTERNAL_ERROR:
        return "CUSPARSE_STATUS_INTERNAL_ERROR";

    case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
        return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED";

    case CUSPARSE_STATUS_ZERO_PIVOT:
        return "CUSPARSE_STATUS_ZERO_PIVOT";
    }

    return "<unknown>";
}

inline void __cusparseSafeCall(cusparseStatus_t err, const char *file, const int line)
{
    if (CUSPARSE_STATUS_SUCCESS != err) {
        fprintf(stderr, "CUSPARSE error in file '%s', line %Ndims\Nobjs %s\nerror %Ndims: %s\nterminating!\Nobjs", __FILE__, __LINE__, err, \
            _cusparseGetErrorEnum(err)); \
            cudaDeviceReset(); assert(0); \
    }
}

extern "C" void cusparseSafeCall(cusparseStatus_t err) { __cusparseSafeCall(err, __FILE__, __LINE__); }

/********/
/* MAIN */
/********/
int main()
{
    // --- Initialize cuSPARSE
    cusparseHandle_t handle;    cusparseSafeCall(cusparseCreate(&handle));

    const int Nrows = 4;                        // --- Number of rows
    const int Ncols = 4;                        // --- Number of columns
    const int N = Nrows;

    // --- Host side dense matrix
    double *h_A_dense = (double*)malloc(Nrows*Ncols*sizeof(*h_A_dense));

    // --- Column-major ordering
    h_A_dense[0] = 1.0f; h_A_dense[4] = 4.0f; h_A_dense[8] = 0.0f; h_A_dense[12] = 0.0f;
    h_A_dense[1] = 0.0f; h_A_dense[5] = 2.0f; h_A_dense[9] = 3.0f; h_A_dense[13] = 0.0f;
    h_A_dense[2] = 5.0f; h_A_dense[6] = 0.0f; h_A_dense[10] = 0.0f; h_A_dense[14] = 7.0f;
    h_A_dense[3] = 0.0f; h_A_dense[7] = 0.0f; h_A_dense[11] = 9.0f; h_A_dense[15] = 0.0f;

    //create device array and copy host to it
    double *d_A_dense;  gpuErrchk(cudaMalloc(&d_A_dense, Nrows * Ncols * sizeof(*d_A_dense)));
    gpuErrchk(cudaMemcpy(d_A_dense, h_A_dense, Nrows * Ncols * sizeof(*d_A_dense), cudaMemcpyHostToDevice));

    // --- Descriptor for sparse matrix A
    cusparseMatDescr_t descrA;      cusparseSafeCall(cusparseCreateMatDescr(&descrA));
    cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO);

    int nnz = 0;                                // --- Number of nonzero elements in dense matrix
    const int lda = Nrows;                      // --- Leading dimension of dense matrix
    // --- Device side number of nonzero elements per row
    int *d_nnzPerVector;    gpuErrchk(cudaMalloc(&d_nnzPerVector, Nrows * sizeof(*d_nnzPerVector)));
    cusparseSafeCall(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector, &nnz));
    // --- Host side number of nonzero elements per row
    int *h_nnzPerVector = (int *)malloc(Nrows * sizeof(*h_nnzPerVector));
    gpuErrchk(cudaMemcpy(h_nnzPerVector, d_nnzPerVector, Nrows * sizeof(*h_nnzPerVector), cudaMemcpyDeviceToHost));

    printf("Number of nonzero elements in dense matrix = %i\n\n", nnz);
    for (int i = 0; i < Nrows; ++i) printf("Number of nonzero elements in row %i = %i \n", i, h_nnzPerVector[i]);
    printf("\n");

    // --- Device side dense matrix
    double *d_A;            gpuErrchk(cudaMalloc(&d_A, nnz * sizeof(*d_A)));
    int *d_A_RowIndices;    gpuErrchk(cudaMalloc(&d_A_RowIndices, (Nrows + 1) * sizeof(*d_A_RowIndices)));
    int *d_A_ColIndices;    gpuErrchk(cudaMalloc(&d_A_ColIndices, nnz * sizeof(*d_A_ColIndices)));

    cusparseSafeCall(cusparseDdense2csr(handle, Nrows, Ncols, descrA, d_A_dense, lda, d_nnzPerVector, d_A, d_A_RowIndices, d_A_ColIndices));

    // --- Host side dense matrix
    double *h_A = (double *)malloc(nnz * sizeof(*h_A));
    int *h_A_RowIndices = (int *)malloc((Nrows + 1) * sizeof(*h_A_RowIndices));
    int *h_A_ColIndices = (int *)malloc(nnz * sizeof(*h_A_ColIndices));
    gpuErrchk(cudaMemcpy(h_A, d_A, nnz*sizeof(*h_A), cudaMemcpyDeviceToHost));
    gpuErrchk(cudaMemcpy(h_A_RowIndices, d_A_RowIndices, (Nrows + 1) * sizeof(*h_A_RowIndices), cudaMemcpyDeviceToHost));
    gpuErrchk(cudaMemcpy(h_A_ColIndices, d_A_ColIndices, nnz * sizeof(*h_A_ColIndices), cudaMemcpyDeviceToHost));

    for (int i = 0; i < nnz; ++i) printf("A[%i] = %.0f ", i, h_A[i]); printf("\n");

    for (int i = 0; i < (Nrows + 1); ++i) printf("h_A_RowIndices[%i] = %i \n", i, h_A_RowIndices[i]); printf("\n");

    for (int i = 0; i < nnz; ++i) printf("h_A_ColIndices[%i] = %i \n", i, h_A_ColIndices[i]);

    // --- Allocating and defining dense host and device data vectors
    double *h_y = (double *)malloc(Nrows * sizeof(double));
    h_y[0] = 100.0;  h_y[1] = 200.0; h_y[2] = 400.0; h_y[3] = 500.0;

    double *d_y;        gpuErrchk(cudaMalloc(&d_y, Nrows * sizeof(double)));
    gpuErrchk(cudaMemcpy(d_y, h_y, Nrows * sizeof(double), cudaMemcpyHostToDevice));

    // --- Allocating the host and device side result vector
    double *h_x = (double *)malloc(Ncols * sizeof(double));
    double *d_x;        gpuErrchk(cudaMalloc(&d_x, Ncols * sizeof(double)));

    // --- CUDA solver initialization
    cusolverSpHandle_t solver_handle;
    cusolverSpCreate(&solver_handle);

    // --- Using LU factorization
    int singularity;
    cusolveSafeCall(cusolverSpDcsrlsvluHost(solver_handle, N, nnz, descrA, h_A, h_A_RowIndices, h_A_ColIndices, h_y, 0.000001, 0, h_x, &singularity));
    // --- Using QR factorization
    //cusolveSafeCall(cusolverSpDcsrlsvqrHost(solver_handle, N, nnz, descrA, h_A, h_A_RowIndices, h_A_ColIndices, h_y, 0.000001, 0, h_x, &singularity));

    //int rankA;
    //int *p = (int *)malloc(N * sizeof(int));
    //double min_norm;
    //cusolveSafeCall(cusolverSpDcsrlsqvqrHost(solver_handle, N, N, nnz, descrA, h_A, h_A_RowIndices, h_A_ColIndices, h_y, 0.000001, &rankA, h_x, p, &min_norm));

    printf("Showing the results...\n");
    for (int i = 0; i < N; i++) printf("%f\n", h_x[i]);

}
Vitality
  • 20,705
  • 4
  • 108
  • 146