In short:
To tag a text, use nltk.pos_tag
but do note its quirks (Python NLTK pos_tag not returning the correct part-of-speech tag):
>>> from nltk import sent_tokenize, word_tokenize, pos_tag
>>> text = "This is a foo bar piece of text. And there are many sentences in this text."
>>> tagged_text = [pos_tag(word_tokenize(sent)) for sent in sent_tokenize(text)]
>>> tagged_text
[[('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('foo', 'NN'), ('bar', 'NN'), ('piece', 'NN'), ('of', 'IN'), ('text', 'NN'), ('.', '.')], [('And', 'CC'), ('there', 'EX'), ('are', 'VBP'), ('many', 'JJ'), ('sentences', 'NNS'), ('in', 'IN'), ('this', 'DT'), ('text', 'NN'), ('.', '.')]]
In long:
A list of NLTK datasets can be found by:
>>> import nltk
>>> nltk.download()
And nltk.corpus.brown
corpus is one of the most commonly used corpus for Natural Language Processing or text processing (see What is the difference between corpus and lexicon in NLTK (python) for jargons).
In the case of brown corpus, it is a fully tagged and tokenized corpus so all NLTK provided was a reader. To access the various annotations, see section 1.3 at http://www.nltk.org/howto/corpus.html, here's a few examples:
>>> from nltk.corpus import brown
>>> brown.words()[:50]
[u'The', u'Fulton', u'County', u'Grand', u'Jury', u'said', u'Friday', u'an', u'investigation', u'of', u"Atlanta's", u'recent', u'primary', u'election', u'produced', u'``', u'no', u'evidence', u"''", u'that', u'any', u'irregularities', u'took', u'place', u'.', u'The', u'jury', u'further', u'said', u'in', u'term-end', u'presentments', u'that', u'the', u'City', u'Executive', u'Committee', u',', u'which', u'had', u'over-all', u'charge', u'of', u'the', u'election', u',', u'``', u'deserves', u'the', u'praise']
>>> brown.tagged_words()[:50]
[(u'The', u'AT'), (u'Fulton', u'NP-TL'), (u'County', u'NN-TL'), (u'Grand', u'JJ-TL'), (u'Jury', u'NN-TL'), (u'said', u'VBD'), (u'Friday', u'NR'), (u'an', u'AT'), (u'investigation', u'NN'), (u'of', u'IN'), (u"Atlanta's", u'NP$'), (u'recent', u'JJ'), (u'primary', u'NN'), (u'election', u'NN'), (u'produced', u'VBD'), (u'``', u'``'), (u'no', u'AT'), (u'evidence', u'NN'), (u"''", u"''"), (u'that', u'CS'), (u'any', u'DTI'), (u'irregularities', u'NNS'), (u'took', u'VBD'), (u'place', u'NN'), (u'.', u'.'), (u'The', u'AT'), (u'jury', u'NN'), (u'further', u'RBR'), (u'said', u'VBD'), (u'in', u'IN'), (u'term-end', u'NN'), (u'presentments', u'NNS'), (u'that', u'CS'), (u'the', u'AT'), (u'City', u'NN-TL'), (u'Executive', u'JJ-TL'), (u'Committee', u'NN-TL'), (u',', u','), (u'which', u'WDT'), (u'had', u'HVD'), (u'over-all', u'JJ'), (u'charge', u'NN'), (u'of', u'IN'), (u'the', u'AT'), (u'election', u'NN'), (u',', u','), (u'``', u'``'), (u'deserves', u'VBZ'), (u'the', u'AT'), (u'praise', u'NN')]
>>> brown.sents()
[[u'The', u'Fulton', u'County', u'Grand', u'Jury', u'said', u'Friday', u'an', u'investigation', u'of', u"Atlanta's", u'recent', u'primary', u'election', u'produced', u'``', u'no', u'evidence', u"''", u'that', u'any', u'irregularities', u'took', u'place', u'.'], [u'The', u'jury', u'further', u'said', u'in', u'term-end', u'presentments', u'that', u'the', u'City', u'Executive', u'Committee', u',', u'which', u'had', u'over-all', u'charge', u'of', u'the', u'election', u',', u'``', u'deserves', u'the', u'praise', u'and', u'thanks', u'of', u'the', u'City', u'of', u'Atlanta', u"''", u'for', u'the', u'manner', u'in', u'which', u'the', u'election', u'was', u'conducted', u'.'], ...]
>>> brown.sents()[:3]
[[u'The', u'Fulton', u'County', u'Grand', u'Jury', u'said', u'Friday', u'an', u'investigation', u'of', u"Atlanta's", u'recent', u'primary', u'election', u'produced', u'``', u'no', u'evidence', u"''", u'that', u'any', u'irregularities', u'took', u'place', u'.'], [u'The', u'jury', u'further', u'said', u'in', u'term-end', u'presentments', u'that', u'the', u'City', u'Executive', u'Committee', u',', u'which', u'had', u'over-all', u'charge', u'of', u'the', u'election', u',', u'``', u'deserves', u'the', u'praise', u'and', u'thanks', u'of', u'the', u'City', u'of', u'Atlanta', u"''", u'for', u'the', u'manner', u'in', u'which', u'the', u'election', u'was', u'conducted', u'.'], [u'The', u'September-October', u'term', u'jury', u'had', u'been', u'charged', u'by', u'Fulton', u'Superior', u'Court', u'Judge', u'Durwood', u'Pye', u'to', u'investigate', u'reports', u'of', u'possible', u'``', u'irregularities', u"''", u'in', u'the', u'hard-fought', u'primary', u'which', u'was', u'won', u'by', u'Mayor-nominate', u'Ivan', u'Allen', u'Jr.', u'.']]
>>> brown.tagged_sents()[:3]
[[(u'The', u'AT'), (u'Fulton', u'NP-TL'), (u'County', u'NN-TL'), (u'Grand', u'JJ-TL'), (u'Jury', u'NN-TL'), (u'said', u'VBD'), (u'Friday', u'NR'), (u'an', u'AT'), (u'investigation', u'NN'), (u'of', u'IN'), (u"Atlanta's", u'NP$'), (u'recent', u'JJ'), (u'primary', u'NN'), (u'election', u'NN'), (u'produced', u'VBD'), (u'``', u'``'), (u'no', u'AT'), (u'evidence', u'NN'), (u"''", u"''"), (u'that', u'CS'), (u'any', u'DTI'), (u'irregularities', u'NNS'), (u'took', u'VBD'), (u'place', u'NN'), (u'.', u'.')], [(u'The', u'AT'), (u'jury', u'NN'), (u'further', u'RBR'), (u'said', u'VBD'), (u'in', u'IN'), (u'term-end', u'NN'), (u'presentments', u'NNS'), (u'that', u'CS'), (u'the', u'AT'), (u'City', u'NN-TL'), (u'Executive', u'JJ-TL'), (u'Committee', u'NN-TL'), (u',', u','), (u'which', u'WDT'), (u'had', u'HVD'), (u'over-all', u'JJ'), (u'charge', u'NN'), (u'of', u'IN'), (u'the', u'AT'), (u'election', u'NN'), (u',', u','), (u'``', u'``'), (u'deserves', u'VBZ'), (u'the', u'AT'), (u'praise', u'NN'), (u'and', u'CC'), (u'thanks', u'NNS'), (u'of', u'IN'), (u'the', u'AT'), (u'City', u'NN-TL'), (u'of', u'IN-TL'), (u'Atlanta', u'NP-TL'), (u"''", u"''"), (u'for', u'IN'), (u'the', u'AT'), (u'manner', u'NN'), (u'in', u'IN'), (u'which', u'WDT'), (u'the', u'AT'), (u'election', u'NN'), (u'was', u'BEDZ'), (u'conducted', u'VBN'), (u'.', u'.')], [(u'The', u'AT'), (u'September-October', u'NP'), (u'term', u'NN'), (u'jury', u'NN'), (u'had', u'HVD'), (u'been', u'BEN'), (u'charged', u'VBN'), (u'by', u'IN'), (u'Fulton', u'NP-TL'), (u'Superior', u'JJ-TL'), (u'Court', u'NN-TL'), (u'Judge', u'NN-TL'), (u'Durwood', u'NP'), (u'Pye', u'NP'), (u'to', u'TO'), (u'investigate', u'VB'), (u'reports', u'NNS'), (u'of', u'IN'), (u'possible', u'JJ'), (u'``', u'``'), (u'irregularities', u'NNS'), (u"''", u"''"), (u'in', u'IN'), (u'the', u'AT'), (u'hard-fought', u'JJ'), (u'primary', u'NN'), (u'which', u'WDT'), (u'was', u'BEDZ'), (u'won', u'VBN'), (u'by', u'IN'), (u'Mayor-nominate', u'NN-TL'), (u'Ivan', u'NP'), (u'Allen', u'NP'), (u'Jr.', u'NP'), (u'.', u'.')]]
The structure for:
nltk.corpus.brown.words()
is a list of string, where each item in the list is a word
nltk.corpus.brown.tagged_words()
is a list of tuples with the first element as the word and the 2nd element in the tuple as the tag
nltk.corpus.sents()
is a list of a list of string, where the other list comprises the whole corpus and the inner list is one sentence
nltk.corpus.tagged_sents()
is a list of list of tuples, where it's the same as nltk.corpus.sents()
but the inner list is a tuple of word and tag.