Pointer arithmetic, in this case adding an integer value to a pointer value, advances the pointer value in units of the type it points to. If you have a pointer to an 8-byte type, adding 1 to that pointer will advance the pointer by 8 bytes.
Pointer arithmetic is valid only if both the original pointer and the result of the addition point to elements of the same array object, or just past the end of it.
The way the C standard describes this is (N1570 6.5.6 paragraph 8):
When an expression that has integer type is added to or subtracted
from a pointer, the result has the type of the pointer operand. If the
pointer operand points to an element of an array object, and the array
is large enough, the result points to an element offset from the
original element such that the difference of the subscripts of the
resulting and original array elements equals the integer expression.
[...]
If both the pointer operand and the result point to elements of the
same array object, or one past the last element of the array object,
the evaluation shall not produce an overflow; otherwise, the behavior
is undefined. If the result points one past the last element of the
array object, it shall not be used as the operand of a unary *
operator that is evaluated.
A pointer just past the end of an array is valid, but you can't dereference it. A single non-array object is treated as a 1-element array.
Your program has undefined behavior. You add 1
to a null pointer. Since the null pointer doesn't point to any object, pointer arithmetic on it is undefined.
But compilers aren't required to detect undefined behavior, and your program will probably treat a null pointer just like any valid pointer value, and perform arithmetic on it in the same way. So if the null pointer points to address 0
(this is not guaranteed, BTW, but it's very common), then adding 1
to it will probably give you a pointer to address N, where N is the size in bytes of the type it points to.
You then convert the resulting pointer to int
(which is at best implementation-defined, will lose information if pointers are bigger than int
, and may yield a trap representation) and you print the int
value. The result, on most systems, will probably show you the sizes of char
, int
, float
, and double
, which are commonly 1, 4, 4, and 8 bytes, respectively.
Your program's behavior is undefined, but the way it actually behaves on your system is typical and unsurprising.
Here's a program that doesn't have undefined behavior that illustrates the same point:
#include <stdio.h>
int main(void) {
char c;
int i;
float f;
double d;
char *p = &c;
int *q = &i;
float *r = &f;
double *s = &d;
printf("char: %p --> %p\n", (void*)p, (void*)(p + 1));
printf("int: %p --> %p\n", (void*)q, (void*)(q + 1));
printf("float: %p --> %p\n", (void*)r, (void*)(r + 1));
printf("double: %p --> %p\n", (void*)s, (void*)(s + 1));
return 0;
}
and the output on my system:
char: 0x7fffa67dc84f --> 0x7fffa67dc850
int: 0x7fffa67dc850 --> 0x7fffa67dc854
float: 0x7fffa67dc854 --> 0x7fffa67dc858
double: 0x7fffa67dc858 --> 0x7fffa67dc860
The output is not as clear as your program's output, but if you examine the results closely you can see that adding 1 to a char*
advances it by 1 byte, an int*
or float*
by 4 bytes, and a double*
by 8 bytes. (Other than char
, which by definition has a size of 1 bytes, these may vary on some systems.)
Note that the output of the "%p"
format is implementation-defined, and may or may not reflect the kind of arithmetic relationship you might expect. I've worked on systems (Cray vector computers) where incrementing a char*
pointer would actually update a byte offset stored in the high-order 3 bits of the 64-bit word. On such a system, the output of my program (and of yours) would be much more difficult to interpret unless you know the low-level details of how the machine and compiler work.
But for most purposes, you don't need to know those low-level details. What's important is that pointer arithmetic works as it's described in the C standard. Knowing how it's done on the bit level can be useful for debugging (that's pretty much what %p
is for), but is not necessary to writing correct code.