The short answer is "Yes, you can."
The follow-up question is "Why?" One of the strengths of Python is the remarkable dynamism, and by restricting that ability you are actually making your class less useful (but see edit at bottom).
However, there are good reasons to be restrictive, and if you do choose to go down that route you will need to modify your __setattr__
method:
def __setattr__(self, name, value):
if name not in ('my', 'attribute', 'names',):
raise AttributeError('attribute %s not allowed' % name)
else:
super().__setattr__(name, value)
There is no need to mess with __getattr__
nor __getattribute__
since they will not return an attribute that doesn't exist.
Here is your code, slightly modified -- I added the __setattr__
method to Node
, and added an _allowed_attributes
to Definition
and Theorem
.
class Node:
def __setattr__(self, name, value):
if name not in self._allowed_attributes:
raise AttributeError('attribute %s does not and cannot exist' % name)
super().__setattr__(name, value)
class Definition(Node):
_allowed_attributes = '_plural', 'type'
def __init__(self,dic):
self.type = "definition"
super().__init__(dic)
self.plural = move_attribute(dic, {'plural', 'pl'}, strict=False)
@property
def plural(self):
return self._plural
@plural.setter
def plural(self, new_plural):
if new_plural is None:
self._plural = None
else:
clean_plural = check_type_and_clean(new_plural, str)
assert dunderscore_count(clean_plural)>=2
self._plural = clean_plural
class Theorem(Node):
_allowed_attributes = 'type', 'proofs'
def __init__(self, dic):
self.type = "theorem"
super().__init__(dic)
self.proofs = move_attribute(dic, {'proofs', 'proof'}, strict=False)
In use it looks like this:
>>> theorem = Theorem(...)
>>> theorem.plural = 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 6, in __setattr__
AttributeError: attribute plural does not and cannot exist
edit
Having thought about this some more, I think a good compromise for what you want, and to actually answer the part of your question about restricting allowed changes to setters only, would be to:
- use a metaclass to inspect the class at creation time and dynamically build the
_allowed_attributes
tuple
- modify the
__setattr__
of Node
to always allow modification/creation of attributes with at least one leading _
This gives you some protection against both misspellings and creation of attributes you don't want, while still allowing programmers to work around or enhance the classes for their own needs.
Okay, the new meta class looks like:
class NodeMeta(type):
def __new__(metacls, cls, bases, classdict):
node_cls = super().__new__(metacls, cls, bases, classdict)
allowed_attributes = []
for base in (node_cls, ) + bases:
for name, obj in base.__dict__.items():
if isinstance(obj, property) and hasattr(obj, '__fset__'):
allowed_attributes.append(name)
node_cls._allowed_attributes = tuple(allowed_attributes)
return node_cls
The Node
class has two adjustments: include the NodeMeta
metaclass and adjust __setattr__
to only block non-underscore leading attributes:
class Node(metaclass=NodeMeta):
def __init__(self, dic):
self._dic = dic
def __setattr__(self, name, value):
if not name[0] == '_' and name not in self._allowed_attributes:
raise AttributeError('attribute %s does not and cannot exist' % name)
super().__setattr__(name, value)
Finally, the Node
subclasses Theorem
and Definition
have the type
attribute moved into the class namespace so there is no issue with setting them -- and as a side note, type
is a bad name as it is also a built-in function -- maybe node_type
instead?
class Definition(Node):
type = "definition"
...
class Theorem(Node):
type = "theorem"
...
As a final note: even this method is not immune to somebody actually adding or changing attributes, as object.__setattr__(theorum_instance, 'an_attr', 99)
can still be used -- or (even simpler) the _allowed_attributes
can be modified; however, if somebody is going to all that work they hopefully know what they are doing... and if not, they own all the pieces. ;)