A table cell's minimum width is 0 or the size of the largest word or image within that cell.
The default sizing algorithm requires two passes through the table data. In the first pass, word wrapping is disabled, and the user agent keeps track of the minimum and maximum width of each cell. The maximum width is given by the widest line. As word wrap has been disabled, paragraphs are treated as long lines unless broken by
elements. The minimum width is given by the widest word or image etc. taking into account leading indents and list bullets etc. In other words, if you were to format the cell's content in a window of its own, determine the minimum width you could make the window before things begin to be clipped.
The minimum and maximum cell widths are then used to determine the corresponding minimum and maximum widths for the columns. These in turn, are used to find the minimum and maximum width for the table. Note that cells can contain nested tables, but this doesn't complicate the code significantly. The next step is to assign column widths according to the current window size (more accurately - the width between the left and right margins).
The table borders and intercell margins need to be included in the assignment step. There are three cases:
- The minimum table width is equal to or wider than the available space. In this case, assign the minimum widths and allow the user to scroll horizontally. For conversion to braille, it will be necessary to replace the cells by references to notes containing their full content. By convention these appear before the table.
- The maximum table width fits within the available space. In this case, set the columns to their maximum widths.
- The maximum width of the table is greater than the available space, but the minimum table width is smaller. In this case, find the difference between the available space and the minimum table width, lets call it W. Lets also call D the difference between maximum and minimum width of the table.
For each column, let d be the the difference between maximum and minimum width of that column. Now set the column's width to the minimum width plus d times W over D. This makes columns with lots of text wider than columns with smaller amounts.
This assignment step is then repeated for nested tables. In this case, the width of the enclosing table's cell plays the role of the current window size in the above description. This process is repeated recursively for all nested tables.
If the COLSPEC attribute specifies the column widths explicitly, the user agent can attempt to use these values. If subsequently, one of the cells overflows its column width, the two pass mechanism may be invoked to redraw the table with more appropriate widths. If the attribute specifies relative widths, then the two pass model is always needed.
The column width assignment algorithm is then modified:
- Explicit widths from the COLSPEC attribute should be used when given, provided they are greater than the minimum column width, otherwise the latter should be used.
- For relative widths, the surplus space W, as defined above, is divided up between the columns appropriately, ensuring that each column is given at least its minimum width. If W is zero or negative, column widths should be increased over the minimum width to meet the relative width requirements.
If the table width is specified with the WIDTH attribute, the user agent attempts to set column widths to match. The WIDTH attribute should be disregarded if this results in columns having less than their minimum widths.